Suppr超能文献

使用相似性指数和分割误差评估自动和半自动颅骨剥离算法

Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error.

作者信息

Lee Jong-Min, Yoon Uicheul, Nam Sang-Hee, Kim Jung-Hyun, Kim In-Young, Kim Sun I

机构信息

Department of Biomedical Engineering, College of Medicine, Hanyang University, Haengdang-dong, Seongdong-ku, 133-791 Seoul, South Korea.

出版信息

Comput Biol Med. 2003 Nov;33(6):495-507. doi: 10.1016/s0010-4825(03)00022-2.

Abstract

The skull-stripping in the MR brain image appears to be a key issue in neuroimage analysis. In this paper, we evaluated the accuracy and efficiency of both automated and semi-automated skull-stripping methods. The evaluation was performed on both simulated and real data with the ground truth in skull-stripping. Although automated method showed better efficient results, it should require additional intervention. In contrast to that, semi-automated method showed better accurate results, but it was time consuming and prone to operator bias. Therefore, it might be practical that the semi-automated method was used as the post-processing of the automated one.

摘要

磁共振脑图像中的颅骨剥离似乎是神经图像分析中的一个关键问题。在本文中,我们评估了自动和半自动颅骨剥离方法的准确性和效率。评估是在模拟数据和真实数据上进行的,颅骨剥离有地面真值。虽然自动方法显示出更好的效率结果,但它需要额外的干预。与此相反,半自动方法显示出更好的准确结果,但它耗时且容易受到操作员偏差的影响。因此,将半自动方法用作自动方法的后处理可能是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验