Suppr超能文献

从分离群体中推断因果表型网络。

Inferring causal phenotype networks from segregating populations.

作者信息

Chaibub Neto Elias, Ferrara Christine T, Attie Alan D, Yandell Brian S

机构信息

Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2008 Jun;179(2):1089-100. doi: 10.1534/genetics.107.085167. Epub 2008 May 27.

Abstract

A major goal in the study of complex traits is to decipher the causal interrelationships among correlated phenotypes. Current methods mostly yield undirected networks that connect phenotypes without causal orientation. Some of these connections may be spurious due to partial correlation that is not causal. We show how to build causal direction into an undirected network of phenotypes by including causal QTL for each phenotype. We evaluate causal direction for each edge connecting two phenotypes, using a LOD score. This new approach can be applied to many different population structures, including inbred and outbred crosses as well as natural populations, and can accommodate feedback loops. We assess its performance in simulation studies and show that our method recovers network edges and infers causal direction correctly at a high rate. Finally, we illustrate our method with an example involving gene expression and metabolite traits from experimental crosses.

摘要

复杂性状研究的一个主要目标是破译相关表型之间的因果相互关系。目前的方法大多产生无向网络,这些网络连接表型但没有因果方向。由于非因果的部分相关性,其中一些连接可能是虚假的。我们展示了如何通过为每个表型纳入因果QTL,将因果方向纳入表型的无向网络中。我们使用LOD分数评估连接两个表型的每条边的因果方向。这种新方法可以应用于许多不同的群体结构,包括近交和远交杂交以及自然群体,并且可以容纳反馈回路。我们在模拟研究中评估了它的性能,结果表明我们的方法能够以很高的准确率恢复网络边并正确推断因果方向。最后,我们用一个涉及实验杂交中基因表达和代谢物性状的例子来说明我们的方法。

相似文献

1
Inferring causal phenotype networks from segregating populations.从分离群体中推断因果表型网络。
Genetics. 2008 Jun;179(2):1089-100. doi: 10.1534/genetics.107.085167. Epub 2008 May 27.
7
Uncovering the genetic landscape for multiple sleep-wake traits.揭示多种睡眠-觉醒特征的遗传图谱。
PLoS One. 2009;4(4):e5161. doi: 10.1371/journal.pone.0005161. Epub 2009 Apr 10.

引用本文的文献

2
Reconstruction of Networks with Direct and Indirect Genetic Effects.具有直接和间接遗传效应的网络重建。
Genetics. 2020 Apr;214(4):781-807. doi: 10.1534/genetics.119.302949. Epub 2020 Feb 3.
5
Causal phenotypic networks for egg traits in an F chicken population.F 鸡群体中蛋性状的因果表型网络。
Mol Genet Genomics. 2019 Dec;294(6):1455-1462. doi: 10.1007/s00438-019-01588-2. Epub 2019 Jun 25.
7
A longitudinal quantitative trait locus mapping of chicken growth traits.鸡生长性状的纵向数量性状基因座定位
Mol Genet Genomics. 2019 Feb;294(1):243-252. doi: 10.1007/s00438-018-1501-y. Epub 2018 Oct 12.
8

本文引用的文献

6
Structural model analysis of multiple quantitative traits.多数量性状的结构模型分析
PLoS Genet. 2006 Jul;2(7):e114. doi: 10.1371/journal.pgen.0020114. Epub 2006 Jun 7.
10
A general framework for weighted gene co-expression network analysis.加权基因共表达网络分析的通用框架。
Stat Appl Genet Mol Biol. 2005;4:Article17. doi: 10.2202/1544-6115.1128. Epub 2005 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验