Khan Nisar A, Githiri Stephen M, Benitez Eduardo R, Abe Jun, Kawasaki Shinji, Hayashi Takeshi, Takahashi Ryoji
University of Tsukuba, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
Theor Appl Genet. 2008 Aug;117(4):479-87. doi: 10.1007/s00122-008-0792-5. Epub 2008 May 27.
Early-maturing cultivars of soybean [Glycine max (L.) Merr.] native to the shores of the Sea of Okhotsk (Sakhalin and Kuril Islands) and eastern Hokkaido (northern Japan) have a strong tendency to produce cleistogamous flowers throughout their blooming period. A previous study revealed that cleistogamy is controlled by a minimum of two genes with epistatic interaction, one of which is associated with a maturity gene responsible for insensitivity to incandescent long daylength (ILD). This study was conducted to determine the genetic basis of cleistogamy in more detail by QTL mapping. F2 to F4 progenies derived from a cross between a cleistogamous cv. Karafuto-1 and a chasmogamous cv. Toyosuzu were used. A molecular linkage map spanning 2,180 cM comprising 500 markers was constructed using 89 F2 plants. The markers were distributed in 25 linkage groups. An interval mapping method to analyze categorical traits identified four QTLs for cleistogamy, cl1, cl2, cl3 and cl4, in molecular linkage groups (MLGs) C2, D1a, I and L, respectively. Alleles derived from Karafuto-1 had additive effects to increase probability of cleistogamy at cl3 and cl4, whereas the alleles had additive effects to decrease the probablity at cl1 and cl2. Progeny test confirmed the effects of cl3, which had the highest LOD score (5.20). Composite interval mapping revealed four QTLs for flowering date, fd5-fd8. Judging from relative location with markers and association with ILD responses, fd7 and fd8 may correspond to maturity genes E4 and E3, respectively. cl3 and cl4 were located at similar positions as fd7 and fd8, suggesting that the two maturity genes may control cleistogamy by either pleiotropy or close linkage.
原产于鄂霍次克海沿岸(萨哈林岛和千岛群岛)以及北海道东部(日本北部)的早熟大豆品种[大豆(Glycine max (L.) Merr.)]在整个花期有强烈产生闭花受精花的倾向。先前的一项研究表明,闭花受精受至少两个具有上位性相互作用的基因控制,其中一个基因与一个成熟基因相关,该成熟基因负责对白炽长日照(ILD)不敏感。本研究旨在通过QTL定位更详细地确定闭花受精的遗传基础。使用了闭花受精品种卡拉富托1号与开花受精品种丰铃之间杂交产生的F2至F4后代。利用89株F2植株构建了一个包含500个标记、跨度为2180 cM的分子连锁图谱。这些标记分布在25个连锁群中。一种用于分析分类性状的区间定位方法在分子连锁群(MLG)C2、D1a、I和L中分别鉴定出四个控制闭花受精的QTL,即cl1、cl2、cl3和cl4。来自卡拉富托1号的等位基因在cl3和cl4处具有增加闭花受精概率的加性效应,而在cl1和cl2处具有降低该概率的加性效应。后代测试证实了cl3的效应,其LOD得分最高(5.20)。复合区间定位揭示了四个控制开花日期的QTL,即fd5 - fd8。从与标记的相对位置以及与ILD反应的关联判断,fd7和fd8可能分别对应成熟基因E4和E3。cl3和cl4位于与fd7和fd8相似的位置,表明这两个成熟基因可能通过多效性或紧密连锁来控制闭花受精。