Suppr超能文献

具有增强功能的工程化细菌外膜囊泡。

Engineered bacterial outer membrane vesicles with enhanced functionality.

作者信息

Kim Jae-Young, Doody Anne M, Chen David J, Cremona Gina H, Shuler Michael L, Putnam David, DeLisa Matthew P

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Mol Biol. 2008 Jun 27;380(1):51-66. doi: 10.1016/j.jmb.2008.03.076. Epub 2008 Apr 9.

Abstract

We have engineered bacterial outer membrane vesicles (OMVs) with dramatically enhanced functionality by fusing several heterologous proteins to the vesicle-associated toxin ClyA of Escherichia coli. Similar to native unfused ClyA, chimeric ClyA fusion proteins were found localized in bacterial OMVs and retained activity of the fusion partners, demonstrating for the first time that ClyA can be used to co-localize fully functional heterologous proteins directly in bacterial OMVs. For instance, fusions of ClyA to the enzymes beta-lactamase and organophosphorus hydrolase resulted in synthetic OMVs that were capable of hydrolyzing beta-lactam antibiotics and paraoxon, respectively. Similarly, expression of an anti-digoxin single-chain Fv antibody fragment fused to the C terminus of ClyA resulted in designer "immuno-MVs" that could bind tightly and specifically to the antibody's cognate antigen. Finally, OMVs displaying green fluorescent protein fused to the C terminus of ClyA were highly fluorescent and, as a result of this new functionality, could be easily tracked during vesicle interaction with human epithelial cells. We expect that the relative plasticity exhibited by ClyA as a fusion partner should prove useful for: (i) further mechanistic studies to identify the vesiculation machinery that regulates OMV secretion and to map the intracellular routing of ClyA-containing OMVs during invasion of host cells; and (ii) biotechnology applications such as surface display of proteins and delivery of biologics.

摘要

我们通过将几种异源蛋白与大肠杆菌的囊泡相关毒素ClyA融合,构建出了功能显著增强的细菌外膜囊泡(OMV)。与天然未融合的ClyA相似,嵌合的ClyA融合蛋白定位于细菌OMV中,并保留了融合伙伴的活性,首次证明ClyA可用于将完全功能性的异源蛋白直接共定位于细菌OMV中。例如,ClyA与β-内酰胺酶和有机磷水解酶的融合产生了分别能够水解β-内酰胺抗生素和对氧磷的合成OMV。同样,与ClyA C末端融合的抗地高辛单链Fv抗体片段的表达产生了能够紧密且特异性结合抗体同源抗原的定制“免疫MV”。最后,展示与ClyA C末端融合的绿色荧光蛋白的OMV具有高荧光性,并且由于这种新功能,在囊泡与人类上皮细胞相互作用期间可以很容易地被追踪。我们预计,ClyA作为融合伙伴所表现出的相对可塑性将被证明对以下方面有用:(i)进一步的机制研究,以确定调节OMV分泌的囊泡形成机制,并绘制含ClyA的OMV在宿主细胞入侵期间的细胞内路径;(ii)生物技术应用,如蛋白质的表面展示和生物制剂的递送。

相似文献

1
Engineered bacterial outer membrane vesicles with enhanced functionality.
J Mol Biol. 2008 Jun 27;380(1):51-66. doi: 10.1016/j.jmb.2008.03.076. Epub 2008 Apr 9.
2
Delivery of foreign antigens by engineered outer membrane vesicle vaccines.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3099-104. doi: 10.1073/pnas.0805532107. Epub 2010 Jan 27.
4
Display of Recombinant Proteins on Bacterial Outer Membrane Vesicles by Using Protein Ligation.
Appl Environ Microbiol. 2018 Apr 2;84(8). doi: 10.1128/AEM.02567-17. Print 2018 Apr 15.
5
Quantitative Evaluation of Recombinant Protein Packaged into Outer Membrane Vesicles of Escherichia coli Cells.
Biotechnol Prog. 2018 Jan;34(1):51-57. doi: 10.1002/btpr.2536. Epub 2017 Aug 21.
8
A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A.
J Biol Chem. 2013 Oct 25;288(43):31042-51. doi: 10.1074/jbc.M113.475350. Epub 2013 Sep 9.
10
Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli.
Mol Microbiol. 2006 Jan;59(1):99-112. doi: 10.1111/j.1365-2958.2005.04938.x.

引用本文的文献

2
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives.
Vaccines (Basel). 2025 Jul 20;13(7):767. doi: 10.3390/vaccines13070767.
4
Opportunities and challenges of bacterial extracellular vesicles in regenerative medicine.
J Nanobiotechnology. 2025 Jan 3;23(1):4. doi: 10.1186/s12951-024-02935-1.
5
6
Genetically surface-modified outer membrane vesicles targeting MUC1 antigen in cancer cells.
Biotechnol Rep (Amst). 2024 Sep 3;44:e00854. doi: 10.1016/j.btre.2024.e00854. eCollection 2024 Dec.
8
Analysis of Bacterial Extracellular Vesicles by Immunogold Transmission Electron Microscopy.
Methods Mol Biol. 2024;2843:15-23. doi: 10.1007/978-1-0716-4055-5_2.
10
The proteome of bacterial membrane vesicles in -a time course comparison study in two different media.
Front Microbiol. 2024 Mar 6;15:1361270. doi: 10.3389/fmicb.2024.1361270. eCollection 2024.

本文引用的文献

1
Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response.
Mol Microbiol. 2007 Jan;63(2):545-58. doi: 10.1111/j.1365-2958.2006.05522.x. Epub 2006 Dec 5.
2
Outer membrane vesicle production by Escherichia coli is independent of membrane instability.
J Bacteriol. 2006 Aug;188(15):5385-92. doi: 10.1128/JB.00498-06.
3
Structure of the hemolysin E (HlyE, ClyA, and SheA) channel in its membrane-bound form.
J Biol Chem. 2006 Aug 11;281(32):23042-9. doi: 10.1074/jbc.M602421200. Epub 2006 Jun 5.
4
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
5
Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state.
EMBO J. 2006 Jun 7;25(11):2652-61. doi: 10.1038/sj.emboj.7601130. Epub 2006 May 11.
6
Immunoliposomes for cancer therapy.
Curr Opin Mol Ther. 2006 Feb;8(1):39-45.
7
Antibody-based surface plasmon resonance detection of intact viral pathogen.
Biotechnol Bioeng. 2006 Jul 5;94(4):815-9. doi: 10.1002/bit.20882.
8
Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli.
Mol Microbiol. 2006 Jan;59(1):99-112. doi: 10.1111/j.1365-2958.2005.04938.x.
9
Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli.
Appl Environ Microbiol. 2005 Dec;71(12):8451-9. doi: 10.1128/AEM.71.12.8451-8459.2005.
10
Bacterial outer membrane vesicles and the host-pathogen interaction.
Genes Dev. 2005 Nov 15;19(22):2645-55. doi: 10.1101/gad.1299905.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验