Boas F Edward, Harbury Pehr B
Department of Biochemistry, Stanford University School of Medicine, Beckman B437, 279 Campus Drive West, Stanford, CA 94305-5307, USA.
J Mol Biol. 2008 Jul 4;380(2):415-24. doi: 10.1016/j.jmb.2008.04.001. Epub 2008 Apr 8.
While the molecular-mechanics field has standardized on a few potential energy functions, computational protein design efforts are based on potentials that are unique to individual laboratories. Here we show that a standard molecular-mechanics potential energy function without any modifications can be used to engineer protein-ligand binding. A molecular-mechanics potential is used to reconstruct the coordinates of various binding sites with an average root-mean-square error of 0.61 A and to reproduce known ligand-induced side-chain conformational shifts. Within a series of 34 mutants, the calculation can always distinguish between weak (K(d)>1 mM) and tight (K(d)<10 microM) binding sequences. Starting from partial coordinates of the ribose-binding protein lacking the ligand and the 10 primary contact residues, the molecular-mechanics potential is used to redesign a ribose-binding site. Out of a search space of 2 x 10(12) sequences, the calculation selects a point mutant of the native protein as the top solution (experimental K(d)=17 microM) and the native protein as the second best solution (experimental K(d)=210 nM). The quality of the predictions depends on the accuracy of the generalized Born electrostatics model, treatment of protonation equilibria, high-resolution rotamer sampling, a final local energy minimization step, and explicit modeling of the bound, unbound, and unfolded states. The application of unmodified molecular-mechanics potentials to protein design links two fields in a mutually beneficial way. Design provides a new avenue for testing molecular-mechanics energy functions, and future improvements in these energy functions will presumably lead to more accurate design results.
虽然分子力学领域已经在一些势能函数上实现了标准化,但计算蛋白质设计工作是基于各个实验室特有的势能。在这里,我们表明,无需任何修改的标准分子力学势能函数可用于设计蛋白质-配体结合。分子力学势能用于重建各种结合位点的坐标,平均均方根误差为0.61 Å,并再现已知的配体诱导的侧链构象变化。在一系列34个突变体中,该计算总能区分弱结合(K(d)>1 mM)和紧密结合(K(d)<10 μM)序列。从缺乏配体和10个主要接触残基的核糖结合蛋白的部分坐标开始,分子力学势能用于重新设计一个核糖结合位点。在2×10(12)个序列的搜索空间中,该计算选择天然蛋白的一个点突变体作为最佳解决方案(实验K(d)=17 μM),而天然蛋白作为第二最佳解决方案(实验K(d)=210 nM)。预测的质量取决于广义玻恩静电模型的准确性、质子化平衡的处理、高分辨率旋转异构体采样、最终的局部能量最小化步骤以及结合态、未结合态和未折叠态的显式建模。将未修改的分子力学势能应用于蛋白质设计以互利的方式将两个领域联系起来。设计为测试分子力学能量函数提供了一条新途径,而这些能量函数未来的改进可能会带来更准确的设计结果。