Suppr超能文献

我们对未来的重视程度会影响我们的学习欲望。

How we value the future affects our desire to learn.

作者信息

Moore Alana L, Hauser Cindy E, McCarthy Michael A

机构信息

Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia.

出版信息

Ecol Appl. 2008 Jun;18(4):1061-9. doi: 10.1890/07-0805.1.

Abstract

Active adaptive management is increasingly advocated in natural resource management and conservation biology. Active adaptive management looks at the benefit of employing strategies that may be suboptimal in the near term but which may provide additional information that will facilitate better management in future years. However, when comparing management policies it is traditional to weigh future rewards geometrically (at a constant discount rate) which results in far-distant rewards making a negligible contribution to the total benefit. Under such a discounting scheme active adaptive management is rarely of much benefit, especially if learning is slow. A growing number of authors advocate the use of alternative forms of discounting when evaluating optimal strategies for long-term decisions which have a social component. We consider a theoretical harvested population for which the recovery rate from an unharvestably small population size is unknown and look at the effects on the benefit of experimental management when three different forms of discounting are employed. Under geometric discounting, with a discount rate of 5% per annum, managing to learn actively had little benefit. This study demonstrates that discount functions which weigh future rewards more heavily result in more conservative harvesting strategies, but do not necessarily encourage active learning. Furthermore, the optimal management strategy is not equivalent to employing geometric discounting at a lower rate. If alternative discount functions are made mandatory in calculating optimal management strategies for environmental management then this will affect the structure of optimal management regimes and change when and how much we are willing to invest in learning.

摘要

主动适应性管理在自然资源管理和保护生物学中越来越受到倡导。主动适应性管理关注采用那些短期内可能并非最优,但能提供额外信息以利于未来更好管理的策略所带来的益处。然而,在比较管理政策时,传统做法是按几何方式权衡未来回报(以固定贴现率),这导致远期回报对总收益的贡献微乎其微。在这种贴现方案下,主动适应性管理很少有太大益处,尤其是在学习速度缓慢时。越来越多的作者主张在评估具有社会成分的长期决策的最优策略时,采用替代形式的贴现。我们考虑一个理论上的捕捞种群,其从不堪捕捞的小种群规模恢复的速率未知,并研究当采用三种不同形式的贴现时,实验性管理对收益的影响。在几何贴现下,年利率为5%时,积极学习进行管理几乎没有益处。这项研究表明,更重视未来回报的贴现函数会导致更保守的捕捞策略,但不一定鼓励主动学习。此外,最优管理策略并不等同于以更低的速率采用几何贴现。如果在计算环境管理的最优管理策略时强制使用替代贴现函数,那么这将影响最优管理制度的结构,并改变我们愿意在学习上投入的时间和金额。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验