Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
University of Maine, 168 College Ave, Orono, ME, 04469, USA.
Sci Rep. 2023 May 26;13(1):8567. doi: 10.1038/s41598-023-34725-4.
Positional information encoded in signaling molecules is essential for early patterning in the prosensory domain of the developing cochlea. The sensory epithelium, the organ of Corti, contains an exquisite repeating pattern of hair cells and supporting cells. This requires precision in the morphogen signals that set the initial radial compartment boundaries, but this has not been investigated. To measure gradient formation and morphogenetic precision in developing cochlea, we developed a quantitative image analysis procedure measuring SOX2 and pSMAD1/5/9 profiles in mouse embryos at embryonic day (E)12.5, E13.5, and E14.5. Intriguingly, we found that the pSMAD1/5/9 profile forms a linear gradient up to the medial ~ 75% of the PSD from the pSMAD1/5/9 peak in the lateral edge during E12.5 and E13.5. This is a surprising activity readout for a diffusive BMP4 ligand secreted from a tightly constrained lateral region since morphogens typically form exponential or power-law gradient shapes. This is meaningful for gradient interpretation because while linear profiles offer the theoretically highest information content and distributed precision for patterning, a linear morphogen gradient has not yet been observed. Furthermore, this is unique to the cochlear epithelium as the pSMAD1/5/9 gradient is exponential in the surrounding mesenchyme. In addition to the information-optimized linear profile, we found that while pSMAD1/5/9 is stable during this timeframe, an accompanying gradient of SOX2 shifts dynamically. Last, through joint decoding maps of pSMAD1/5/9 and SOX2, we see that there is a high-fidelity mapping between signaling activity and position in the regions that will become Kölliker's organ and the organ of Corti. Mapping is ambiguous in the prosensory domain precursory to the outer sulcus. Altogether, this research provides new insights into the precision of early morphogenetic patterning cues in the radial cochlea prosensory domain.
在发育中的耳蜗前感觉域中,信号分子中编码的位置信息对于早期模式形成至关重要。感觉上皮,即柯蒂氏器,包含精细的毛细胞和支持细胞的重复模式。这需要精确的形态发生信号来设置初始的径向隔室边界,但这尚未得到研究。为了测量发育中的耳蜗中形态发生的梯度形成和形态发生精度,我们开发了一种定量图像分析程序,用于测量胚胎日(E)12.5、E13.5 和 E14.5 时的小鼠胚胎中的 SOX2 和 pSMAD1/5/9 图谱。有趣的是,我们发现 pSMAD1/5/9 图谱在 E12.5 和 E13.5 期间从侧向边缘的 pSMAD1/5/9 峰到 PSD 的内侧约 75%形成线性梯度。这对于从紧密限制的侧向区域分泌的扩散 BMP4 配体来说是一个令人惊讶的活性读出,因为形态发生素通常形成指数或幂律梯度形状。这对于梯度解释很有意义,因为虽然线性图谱为图案形成提供了理论上最高的信息量和分布精度,但尚未观察到线性形态发生素梯度。此外,这是耳蜗上皮所独有的,因为 pSMAD1/5/9 梯度在周围间质中是指数的。除了信息优化的线性图谱外,我们还发现虽然在这段时间内 pSMAD1/5/9 是稳定的,但伴随的 SOX2 梯度会动态变化。最后,通过 pSMAD1/5/9 和 SOX2 的联合解码图谱,我们看到在将成为科利克器官和柯蒂氏器的区域中,信号活动与位置之间存在高度保真的映射。在外嵴前的前感觉域中,映射是模糊的。总的来说,这项研究为早期形态发生模式形成线索在耳蜗前感觉域中的精度提供了新的见解。