Suppr超能文献

磷酸化的Ssk1可阻止未磷酸化的Ssk1在酵母高渗甘油渗透调节途径中激活丝裂原活化蛋白激酶激酶激酶Ssk2。

Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway.

作者信息

Horie Tetsuro, Tatebayashi Kazuo, Yamada Rika, Saito Haruo

机构信息

Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

出版信息

Mol Cell Biol. 2008 Sep;28(17):5172-83. doi: 10.1128/MCB.00589-08. Epub 2008 Jun 23.

Abstract

In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1 approximately P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1 approximately P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1.

摘要

在酿酒酵母中,外部高渗透压会激活Hog1丝裂原活化蛋白激酶(MAPK),该激酶控制渗透适应的各个方面。Ssk1是细菌双组分反应调节因子的同源物,可激活Hog1上游的Ssk2 MAPK激酶激酶。有人提出,未磷酸化的Ssk1(Ssk1-OH)是活性形式,而通过Sln1-Ypd1-Ssk1多步磷酸化机制在Asp554位点磷酸化的Ssk1(Ssk1P)是无活性形式。在本研究中,我们发现,当Ssk1的磷酸化被磷酸化位点的Ssk1突变或抑制其与向Ssk1供磷的Ypd1相互作用的Ssk1突变阻断时,Ssk2会发生组成型激活。因此,Ssk1-OH确实是Ssk2激活所必需的。然而,野生型Ssk1或不能结合Ssk2的Ssk1突变体的过表达可阻止组成型活性Ssk1突变体激活Ssk2。因此,Ssk1具有双重功能,既是Ssk2的激活剂,又是其自身的抑制剂。我们还发现,Ssk1在细胞内大多以二聚体形式存在。从突变体表型推断,只有Ssk1-OH/Ssk1-OH二聚体才能有效激活Ssk2。因此,由于Ssk1P与Ssk1-OH结合并抑制Ssk1-OH,Ssk1-OH水平的适度波动不会导致Hog1的非生理性有害激活。

相似文献

4
Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae.
Biochemistry. 2009 Aug 25;48(33):8044-50. doi: 10.1021/bi900886g.
10
Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway.
PLoS One. 2015 Sep 4;10(9):e0137199. doi: 10.1371/journal.pone.0137199. eCollection 2015.

引用本文的文献

1
The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in .
Front Cell Dev Biol. 2025 Mar 10;13:1522294. doi: 10.3389/fcell.2025.1522294. eCollection 2025.
2
Engineering a xylose fermenting yeast for lignocellulosic ethanol production.
Nat Chem Biol. 2025 Mar;21(3):443-450. doi: 10.1038/s41589-024-01771-6. Epub 2024 Nov 4.
8
Predicted Functional and Structural Diversity of Receiver Domains in Fungal Two-Component Regulatory Systems.
mSphere. 2021 Oct 27;6(5):e0072221. doi: 10.1128/mSphere.00722-21. Epub 2021 Oct 6.
10
Inhibitory effect of berberine hydrochloride against Candida albicans and the role of the HOG-MAPK pathway.
J Antibiot (Tokyo). 2021 Nov;74(11):807-816. doi: 10.1038/s41429-021-00463-w. Epub 2021 Aug 19.

本文引用的文献

1
Signal processing by the HOG MAP kinase pathway.
Proc Natl Acad Sci U S A. 2008 May 20;105(20):7165-70. doi: 10.1073/pnas.0710770105. Epub 2008 May 14.
2
Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway.
EMBO J. 2007 Aug 8;26(15):3521-33. doi: 10.1038/sj.emboj.7601796. Epub 2007 Jul 12.
3
Bacterial response regulators: versatile regulatory strategies from common domains.
Trends Biochem Sci. 2007 May;32(5):225-34. doi: 10.1016/j.tibs.2007.03.002. Epub 2007 Apr 12.
6
Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
EMBO J. 2006 Jul 12;25(13):3033-44. doi: 10.1038/sj.emboj.7601192. Epub 2006 Jun 15.
7
Mapping pathways and phenotypes by systematic gene overexpression.
Mol Cell. 2006 Feb 3;21(3):319-30. doi: 10.1016/j.molcel.2005.12.011.
8
A common docking site for response regulators on the yeast phosphorelay protein YPD1.
Biochim Biophys Acta. 2005 May 15;1748(2):138-45. doi: 10.1016/j.bbapap.2004.12.009. Epub 2005 Jan 7.
9
Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1.
Nat Cell Biol. 2004 Oct;6(10):997-1002. doi: 10.1038/ncb1174. Epub 2004 Sep 19.
10
The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems.
Structure. 2003 Dec;11(12):1569-81. doi: 10.1016/j.str.2003.10.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验