Suppr超能文献

Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol.

作者信息

Wu Z, Lee Y Y

机构信息

Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA.

出版信息

Appl Biochem Biotechnol. 1998 Spring;70-72:479-92. doi: 10.1007/BF02920161.

Abstract

The enzymatic reaction in the simultaneous saccharification and fermentation (SSF) is operated at a temperature much lower than its optimum level. This forces the enzyme activity to be far below its potential, consequently raising the enzyme requirement. To alleviate this problem, a nonisothermal simultaneous saccharification and fermentation process (NSSF) was investigated. The NSSF is devised so that saccharification and fermentation occur simultaneously, yet in two separate reactors that are maintained at different temperatures. Lignocellulosic biomass is retained inside a column reactor and hydrolyzed at the optimum temperature for the enzymatic reaction (50 degrees C). The effluent from the column reactor is recirculated through a fermenter, which runs at its optimum temperature (20-30 degrees C). The cellulase enzyme activity is increased by a factor of 2-3 when the hydrolysis temperature is raised from 30 to 50 degrees C. The NSSF process has improved the enzymatic reaction in the SSF to the extent that it reduces the overall enzyme requirement by 30-40%. The effect of temperature on beta-glucosidase activity was the most significant among the individual cellulase compounds. Both ethanol yield and productivity in the NSSF are substantially higher than those in the SSF at the enzyme loading of 5 IFPU/g glucan. With 10 IFPU/g glucan, improvement in productivity was more discernible for the NSSF. The terminal yield attainable in 4 d with the SSF was reachable in 40 h with the NSSF.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验