Suppr超能文献

使用氧化锰纳米颗粒通过“阳性对比剂”对移植细胞进行磁共振追踪。

MR tracking of transplanted cells with "positive contrast" using manganese oxide nanoparticles.

作者信息

Gilad Assaf A, Walczak Piotr, McMahon Michael T, Na Hyon Bin, Lee Jung Hee, An Kwangjin, Hyeon Taegwhan, van Zijl Peter C M, Bulte Jeff W M

机构信息

Russell H. Morgan Department of Radiology, Division of MR Research, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.

出版信息

Magn Reson Med. 2008 Jul;60(1):1-7. doi: 10.1002/mrm.21622.

Abstract

Rat glioma cells were labeled using electroporation with either manganese oxide (MnO) or superparamagnetic iron oxide (SPIO) nanoparticles. The viability and proliferation of SPIO-labeled cells (1.9 mg Fe/ml) or cells electroporated with a low dose of MnO (100 microg Mn/ml) was not significantly different from unlabeled cells; a higher MnO dose (785 microg Mn/ml) was found to be toxic. The cellular ion content was 0.1-0.3 pg Mn/cell and 4.4 pg Fe/cell, respectively, with cellular relaxivities of 2.5-4.8 s(-1) (R(1)) and 45-84 s(-1) (R(2)) for MnO-labeled cells. Labeled cells (SPIO and low-dose MnO) were each transplanted in contralateral brain hemispheres of rats and imaged in vivo at 9.4T. While SPIO-labeled cells produced a strong "negative contrast" due to the increase in R(2), MnO-labeled cells produced "positive contrast" with an increased R(1). Simultaneous imaging of both transplants with opposite contrast offers a method for MR "double labeling" of different cell populations.

摘要

使用氧化锰(MnO)或超顺磁性氧化铁(SPIO)纳米颗粒通过电穿孔法对大鼠胶质瘤细胞进行标记。SPIO标记的细胞(1.9毫克铁/毫升)或用低剂量MnO(100微克锰/毫升)电穿孔处理的细胞的活力和增殖与未标记的细胞相比无显著差异;发现较高剂量的MnO(785微克锰/毫升)具有毒性。细胞内离子含量分别为0.1 - 0.3皮克锰/细胞和4.4皮克铁/细胞,MnO标记细胞的细胞弛豫率分别为2.5 - 4.8秒⁻¹(R₁)和45 - 84秒⁻¹(R₂)。将标记的细胞(SPIO和低剂量MnO)分别移植到大鼠对侧脑半球,并在9.4T下进行体内成像。由于R₂增加,SPIO标记的细胞产生强烈的“负性对比”,而MnO标记的细胞因R₁增加产生“正性对比”。对两种具有相反对比的移植细胞进行同步成像,为不同细胞群体的磁共振“双重标记”提供了一种方法。

相似文献

2
MnO-labeled cells: positive contrast enhancement in MRI.
J Phys Chem B. 2012 Nov 8;116(44):13228-38. doi: 10.1021/jp3032918. Epub 2012 Oct 30.
5
In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver.
Radiology. 2004 Dec;233(3):781-9. doi: 10.1148/radiol.2333031714. Epub 2004 Oct 14.
8
Improving the sensitivity of contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons.
Theranostics. 2021 May 8;11(14):6966-6982. doi: 10.7150/thno.59096. eCollection 2021.

引用本文的文献

1
Using Manganese-Enhanced MRI to visualize Magnetogenetic-based Neuromodulation.
bioRxiv. 2025 Jun 21:2025.06.20.660767. doi: 10.1101/2025.06.20.660767.
2
Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics.
Molecules. 2024 Nov 26;29(23):5591. doi: 10.3390/molecules29235591.
3
Manganese-derived biomaterials for tumor diagnosis and therapy.
J Nanobiotechnology. 2024 Jun 15;22(1):335. doi: 10.1186/s12951-024-02629-8.
4
Plant mediated biosynthesis of MnO nanostructures and their biomedical applications.
Heliyon. 2024 Mar 10;10(6):e27695. doi: 10.1016/j.heliyon.2024.e27695. eCollection 2024 Mar 30.
5
A primer on cell tracking using MRI.
Front Med (Lausanne). 2023 May 31;10:1193459. doi: 10.3389/fmed.2023.1193459. eCollection 2023.
6
Multimodal Magnetic Resonance and Photoacoustic Imaging of Tumor-Specific Enzyme-Responsive Hybrid Nanoparticles for Oxygen Modulation.
Front Bioeng Biotechnol. 2022 Jul 13;10:910902. doi: 10.3389/fbioe.2022.910902. eCollection 2022.
8
Rapid Magneto-Sonoporation of Adipose-Derived Cells.
Materials (Basel). 2021 Aug 27;14(17):4877. doi: 10.3390/ma14174877.
9
Benefits and Detriments of Gadolinium from Medical Advances to Health and Ecological Risks.
Molecules. 2020 Dec 7;25(23):5762. doi: 10.3390/molecules25235762.
10
New Vision for Visual Prostheses.
Front Neurosci. 2020 Feb 18;14:36. doi: 10.3389/fnins.2020.00036. eCollection 2020.

本文引用的文献

1
Manganese-enhanced MRI in a rat model of Parkinson's disease.
J Magn Reson Imaging. 2007 Oct;26(4):863-70. doi: 10.1002/jmri.21051.
3
Developing MR reporter genes: promises and pitfalls.
NMR Biomed. 2007 May;20(3):275-90. doi: 10.1002/nbm.1134.
4
Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles.
Angew Chem Int Ed Engl. 2007;46(28):5397-401. doi: 10.1002/anie.200604775.
6
Artificial reporter gene providing MRI contrast based on proton exchange.
Nat Biotechnol. 2007 Feb;25(2):217-9. doi: 10.1038/nbt1277. Epub 2007 Jan 28.
7
Chemodosimetry of in vivo tumor liposomal drug concentration using MRI.
Magn Reson Med. 2006 Nov;56(5):1011-8. doi: 10.1002/mrm.21032.
8
A responsive MRI contrast agent to monitor functional cell status.
Neuroimage. 2006 Sep;32(3):1142-9. doi: 10.1016/j.neuroimage.2006.05.009. Epub 2006 Jul 11.
9
Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride.
NMR Biomed. 2006 Feb;19(1):50-9. doi: 10.1002/nbm.1000.
10
Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy.
Nat Biotechnol. 2005 Nov;23(11):1407-13. doi: 10.1038/nbt1154. Epub 2005 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验