Suppr超能文献

采用停流光刻技术制备载细胞微凝胶颗粒。

Stop-flow lithography to generate cell-laden microgel particles.

作者信息

Panda Priyadarshi, Ali Shamsher, Lo Edward, Chung Bong Geun, Hatton T Alan, Khademhosseini Ali, Doyle Patrick S

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Lab Chip. 2008 Jul;8(7):1056-61. doi: 10.1039/b804234a. Epub 2008 May 22.

Abstract

Encapsulating cells within hydrogels is important for generating three-dimensional (3D) tissue constructs for drug delivery and tissue engineering. This paper describes, for the first time, the fabrication of large numbers of cell-laden microgel particles using a continuous microfluidic process called stop-flow lithography (SFL). Prepolymer solution containing cells was flowed through a microfluidic device and arrays of individual particles were repeatedly defined using pulses of UV light through a transparency mask. Unlike photolithography, SFL can be used to synthesize microgel particles continuously while maintaining control over particle size, shape and anisotropy. Therefore, SFL may become a useful tool for generating cell-laden microgels for various biomedical applications.

摘要

将细胞包裹在水凝胶中对于构建用于药物递送和组织工程的三维(3D)组织构建体很重要。本文首次描述了使用一种称为停流光刻(SFL)的连续微流控工艺制造大量载细胞微凝胶颗粒的过程。含有细胞的预聚物溶液流过微流控装置,并通过透明掩膜使用紫外光脉冲反复定义单个颗粒阵列。与光刻不同,SFL可用于连续合成微凝胶颗粒,同时保持对颗粒大小、形状和各向异性的控制。因此,SFL可能成为一种用于为各种生物医学应用生成载细胞微凝胶的有用工具。

相似文献

1
Stop-flow lithography to generate cell-laden microgel particles.
Lab Chip. 2008 Jul;8(7):1056-61. doi: 10.1039/b804234a. Epub 2008 May 22.
2
Stop-flow lithography for the production of shape-evolving degradable microgel particles.
J Am Chem Soc. 2009 Apr 1;131(12):4499-504. doi: 10.1021/ja809256d.
3
Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
Biomacromolecules. 2014 Jan 13;15(1):283-90. doi: 10.1021/bm401533y. Epub 2014 Jan 2.
4
Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9522-7. doi: 10.1073/pnas.0801866105. Epub 2008 Jul 3.
5
Directed assembly of cell-laden microgels for building porous three-dimensional tissue constructs.
J Biomed Mater Res A. 2011 Apr;97(1):93-102. doi: 10.1002/jbm.a.33034. Epub 2011 Feb 11.
6
Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation.
Adv Mater. 2014 May 21;26(19):3003-8. doi: 10.1002/adma.201304880. Epub 2014 Mar 11.
7
Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
Colloids Surf B Biointerfaces. 2016 Nov 1;147:1-8. doi: 10.1016/j.colsurfb.2016.07.041. Epub 2016 Jul 20.
8
Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):7855-7868. doi: 10.1021/acsami.9b15451. Epub 2020 Feb 10.

引用本文的文献

1
The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration.
Biomater Transl. 2024 Sep 28;5(3):236-256. doi: 10.12336/biomatertransl.2024.03.003. eCollection 2024.
2
3D polymerization (-3DP): Implementing an aqueous two-phase system for the formation of 3D objects inside a microfluidic channel.
Biomicrofluidics. 2024 Oct 24;18(5):054113. doi: 10.1063/5.0226620. eCollection 2024 Sep.
3
Interplay between materials and microfluidics.
Nat Rev Mater. 2017 May;2(5). doi: 10.1038/natrevmats.2017.16. Epub 2017 Apr 20.
4
Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications.
Bioeng Transl Med. 2023 Dec 4;9(3):e10627. doi: 10.1002/btm2.10627. eCollection 2024 May.
5
Ultra-low content physio-chemically crosslinked gelatin hydrogel improves encapsulated 3D cell culture.
Int J Biol Macromol. 2024 Apr;264(Pt 2):130657. doi: 10.1016/j.ijbiomac.2024.130657. Epub 2024 Mar 6.
6
Hydrogel Microparticles for Bone Regeneration.
Gels. 2023 Dec 28;10(1):28. doi: 10.3390/gels10010028.
8
Towards single cell encapsulation for precision biology and medicine.
Adv Drug Deliv Rev. 2023 Oct;201:115010. doi: 10.1016/j.addr.2023.115010. Epub 2023 Jul 16.
9
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.
Chem Rev. 2022 Nov 23;122(22):16839-16909. doi: 10.1021/acs.chemrev.1c00798. Epub 2022 Sep 15.
10

本文引用的文献

1
Microengineered hydrogels for tissue engineering.
Biomaterials. 2007 Dec;28(34):5087-92. doi: 10.1016/j.biomaterials.2007.07.021. Epub 2007 Aug 17.
2
Nanoencapsulation of stem cells within polyelectrolyte multilayer shells.
Macromol Biosci. 2007 Jul 9;7(7):877-82. doi: 10.1002/mabi.200700061.
3
Stop-flow lithography in a microfluidic device.
Lab Chip. 2007 Jul;7(7):818-28. doi: 10.1039/b703457a. Epub 2007 May 21.
4
Direct patterning of composite biocompatible microstructures using microfluidics.
Lab Chip. 2007 May;7(5):574-9. doi: 10.1039/b700869d. Epub 2007 Apr 10.
5
Synthesis and self-assembly of amphiphilic polymeric microparticles.
Langmuir. 2007 Apr 10;23(8):4669-74. doi: 10.1021/la062512i.
6
Multifunctional encoded particles for high-throughput biomolecule analysis.
Science. 2007 Mar 9;315(5817):1393-6. doi: 10.1126/science.1134929.
7
Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels.
FASEB J. 2007 Mar;21(3):790-801. doi: 10.1096/fj.06-7117com. Epub 2006 Dec 28.
8
Interplay of biomaterials and micro-scale technologies for advancing biomedical applications.
J Biomater Sci Polym Ed. 2006;17(11):1221-40. doi: 10.1163/156856206778667488.
9
A controlled-release strategy for the generation of cross-linked hydrogel microstructures.
J Am Chem Soc. 2006 Nov 29;128(47):15064-5. doi: 10.1021/ja065867x.
10
Assessment of hepatocellular function within PEG hydrogels.
Biomaterials. 2007 Jan;28(2):256-70. doi: 10.1016/j.biomaterials.2006.08.043. Epub 2006 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验