Suppr超能文献

典型 G 蛋白偶联受体的偏向分子动力学的假定活性状态。

Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics.

机构信息

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, USA.

出版信息

Biophys J. 2010 May 19;98(10):2347-55. doi: 10.1016/j.bpj.2010.01.047.

Abstract

A major current focus of structural work on G-protein-coupled receptors (GPCRs) pertains to the investigation of their active states. However, for virtually all GPCRs, active agonist-bound intermediate states have been difficult to characterize experimentally owing to their higher conformational flexibility, and thus intrinsic instability, as compared to inactive inverse agonist-bound states. In this work, we explored possible activation pathways of the prototypic GPCR bovine rhodopsin by means of biased molecular dynamics simulations. Specifically, we used an explicit atomistic representation of the receptor and its environment, and sampled the conformational transition from the crystal structure of a photoactivated deprotonated state of rhodopsin to the low pH crystal structure of opsin in the presence of 11-trans-retinal, using adiabatic biased molecular dynamics simulations. We then reconstructed the system free-energy landscape along the predetermined transition trajectories using a path collective variable approach based on metadynamics. Our results suggest that the two experimental endpoints of rhodopsin/opsin are connected by at least two different pathways, and that the conformational transition is populated by at least four metastable states of the receptor, characterized by a different amplitude of the outward movement of transmembrane helix 6.

摘要

目前,结构生物学研究 G 蛋白偶联受体(GPCRs)的一个主要焦点是研究它们的激活状态。然而,由于与非活性的反向激动剂结合态相比,几乎所有 GPCR 的激活态配体结合的中间态具有更高的构象灵活性和内在不稳定性,因此实际上很难用实验方法来对其进行表征。在这项工作中,我们通过有偏向的分子动力学模拟探索了典型 GPCR 牛视紫红质的可能激活途径。具体来说,我们使用了受体及其环境的显式原子表示,并在 11-顺式视黄醛存在的情况下,通过绝热有偏向的分子动力学模拟,从视紫红质光激活去质子化状态的晶体结构采样到视蛋白在低 pH 下的晶体结构的构象转变。然后,我们使用基于元动力学的路径总体变量方法,沿着预定的转变轨迹重建系统的自由能景观。我们的结果表明,视紫红质/视蛋白的两个实验终点至少由两种不同的途径连接,并且受体的构象转变由至少四个不同的跨膜螺旋 6 向外移动幅度的稳定状态组成。

相似文献

1
Putative active states of a prototypic g-protein-coupled receptor from biased molecular dynamics.
Biophys J. 2010 May 19;98(10):2347-55. doi: 10.1016/j.bpj.2010.01.047.
2
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
3
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.
4
Conformational selection and equilibrium governs the ability of retinals to bind opsin.
J Biol Chem. 2015 Feb 13;290(7):4304-18. doi: 10.1074/jbc.M114.603134. Epub 2014 Dec 1.
5
Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11961-11966. doi: 10.1073/pnas.1606347113. Epub 2016 Oct 4.
6
Relevance of rhodopsin studies for GPCR activation.
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.
8
Crystal structure of metarhodopsin II.
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.
10
How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
J Chem Theory Comput. 2017 Sep 12;13(9):4524-4534. doi: 10.1021/acs.jctc.7b00229. Epub 2017 Aug 15.

引用本文的文献

2
Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis.
Int J Mol Sci. 2024 Dec 28;26(1):167. doi: 10.3390/ijms26010167.
5
Free energy calculations of the functional selectivity of 5-HT2B G protein-coupled receptor.
PLoS One. 2020 Dec 9;15(12):e0243313. doi: 10.1371/journal.pone.0243313. eCollection 2020.
6
Deciphering collaborative sidechain motions in proteins during molecular dynamics simulations.
Sci Rep. 2020 Sep 28;10(1):15901. doi: 10.1038/s41598-020-72766-1.
7
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
8
Allostery in G protein-coupled receptors investigated by molecular dynamics simulations.
Curr Opin Struct Biol. 2019 Apr;55:121-128. doi: 10.1016/j.sbi.2019.03.016. Epub 2019 May 13.
10
Structural Features and Ligand Selectivity for 10 Intermediates in the Activation Process of β-Adrenergic Receptor.
ACS Omega. 2017 Dec 31;2(12):8557-8567. doi: 10.1021/acsomega.7b01031. Epub 2017 Dec 1.

本文引用的文献

5
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints.
J Mol Biol. 2010 Feb 26;396(3):510-27. doi: 10.1016/j.jmb.2009.12.003. Epub 2009 Dec 11.
9
Rhodopsin activation switches in a native membrane environment.
Photochem Photobiol. 2009 Mar-Apr;85(2):437-41. doi: 10.1111/j.1751-1097.2008.00490.x.
10
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4689-94. doi: 10.1073/pnas.0811065106. Epub 2009 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验