Zhang Fan, Hancock Edwin R, Goodlett Casey, Gerig Guido
Department of Computer Science, University of York, York YO10 5DD, UK.
Med Image Anal. 2009 Feb;13(1):5-18. doi: 10.1016/j.media.2008.05.001. Epub 2008 Jun 5.
Standard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white matter tractography using diffusion tensor MRI, In: Proc. MICCAI, pp. 435-442]. However, these previous attempts have not utilised the full power of the technique, and as a result the fiber paths were tracked in a goal directed way. In this paper, we provide an advanced technique by presenting a fast and novel probabilistic method for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the weighting and resampling mechanism of particle filtering. We formulate fiber tracking using a non-linear state space model which captures both smoothness regularity of the fibers and the uncertainties in the local fiber orientations due to noise and partial volume effects. Global fiber tracking is then posed as a problem of particle filtering. To model the posterior distribution, we classify voxels of the white matter as either prolate or oblate tensors. We then construct the orientation distributions for prolate and oblate tensors separately. Finally, the importance density function for particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast and efficient sampling is achieved using Ulrich-Wood's simulation algorithm. Given a seed point, the method is able to rapidly locate the globally optimal fiber and also provides a probability map for potential connections. The proposed method is validated and compared to alternative methods both on synthetic data and real-world brain MRI datasets.
标准粒子滤波技术先前已被布鲁恩等人应用于纤维追踪问题[布鲁恩,A.,比约内莫,M.,基基尼斯,R.,韦斯汀,C.F.,2002年。使用序贯重要性采样的白质纤维束成像。见:国际磁共振医学学会年会论文集,第1131页]以及比约内莫等人[比约内莫,M.,布鲁恩,A.,基基尼斯,R.,韦斯汀,C.F.,2002年。使用扩散张量磁共振成像的正则化随机白质纤维束成像,见:医学图像计算与计算机辅助干预国际会议论文集,第435 - 442页]。然而,这些先前的尝试并未充分利用该技术的全部能力,结果纤维路径是以目标导向的方式进行追踪的。在本文中,我们通过提出一种快速且新颖的概率方法来进行扩散加权磁共振成像(DWI)中的白质纤维追踪,提供了一种先进技术,该方法利用了粒子滤波的加权和重采样机制。我们使用非线性状态空间模型来制定纤维追踪,该模型既捕捉了纤维的平滑规律性,又捕捉了由于噪声和部分容积效应导致的局部纤维方向的不确定性。然后将全局纤维追踪作为一个粒子滤波问题提出。为了对后验分布进行建模,我们将白质体素分类为长球张量或扁球张量。然后我们分别构建长球张量和扁球张量的方向分布。最后,使用单位球面上的冯·米塞斯 - 费舍尔分布对粒子滤波的重要性密度函数进行建模。使用乌尔里希 - 伍德的模拟算法实现了快速高效的采样。给定一个种子点,该方法能够快速定位全局最优纤维,并为潜在连接提供概率图。所提出的方法在合成数据和真实世界的脑部磁共振成像数据集上均得到验证,并与其他方法进行了比较。