Suppr超能文献

ESCRT-III的螺旋结构由VPS4拆解。

Helical structures of ESCRT-III are disassembled by VPS4.

作者信息

Lata Suman, Schoehn Guy, Jain Ankur, Pires Ricardo, Piehler Jacob, Gottlinger Heinrich G, Weissenhorn Winfried

机构信息

Unit for Virus Host Cell Interaction, UMR 5233 UJF (Université Joseph Fourier)-EMBL (European Molecular Biology Laboratory)-CNRS, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France.

出版信息

Science. 2008 Sep 5;321(5894):1354-7. doi: 10.1126/science.1161070. Epub 2008 Aug 7.

Abstract

During intracellular membrane trafficking and remodeling, protein complexes known as the ESCRTs (endosomal sorting complexes required for transport) interact with membranes and are required for budding processes directed away from the cytosol, including the budding of intralumenal vesicles to form multivesicular bodies; for the budding of some enveloped viruses; and for daughter cell scission in cytokinesis. We found that the ESCRT-III proteins CHMP2A and CHMP3 (charged multivesicular body proteins 2A and 3) could assemble in vitro into helical tubular structures that expose their membrane interaction sites on the outside of the tubule, whereas the AAA-type adenosine triphosphatase VPS4 could bind on the inside of the tubule and disassemble the tubes upon adenosine triphosphate hydrolysis. CHMP2A and CHMP3 copolymerized in solution, and their membrane targeting was cooperatively enhanced on planar lipid bilayers. Such helical CHMP structures could thus assemble within the neck of an inwardly budding vesicle, catalyzing late steps in budding under the control of VPS4.

摘要

在细胞内膜运输和重塑过程中,一种名为ESCRT(运输所需的内体分选复合物)的蛋白质复合物与膜相互作用,并且是从胞质溶胶向外的出芽过程所必需的,这些过程包括腔内囊泡出芽形成多囊泡体;某些包膜病毒的出芽;以及胞质分裂中的子细胞分裂。我们发现,ESCRT-III蛋白CHMP2A和CHMP3(带电荷的多囊泡体蛋白2A和3)在体外可组装成螺旋管状结构,这些结构将其膜相互作用位点暴露在小管外部,而AAA型三磷酸腺苷酶VPS4可结合在小管内部,并在三磷酸腺苷水解时使小管解体。CHMP2A和CHMP3在溶液中共聚,并且它们在平面脂质双层上的膜靶向作用协同增强。因此,这种螺旋状的CHMP结构可以在内陷出芽囊泡的颈部组装,在VPS4的控制下催化出芽的后期步骤。

相似文献

1
Helical structures of ESCRT-III are disassembled by VPS4.
Science. 2008 Sep 5;321(5894):1354-7. doi: 10.1126/science.1161070. Epub 2008 Aug 7.
2
Membrane scission by the ESCRT-III complex.
Nature. 2009 Mar 12;458(7235):172-7. doi: 10.1038/nature07836. Epub 2009 Feb 22.
3
VPS4 triggers constriction and cleavage of ESCRT-III helical filaments.
Sci Adv. 2019 Apr 10;5(4):eaau7198. doi: 10.1126/sciadv.aau7198. eCollection 2019 Apr.
5
ATP-dependent force generation and membrane scission by ESCRT-III and Vps4.
Science. 2018 Dec 21;362(6421):1423-1428. doi: 10.1126/science.aat1839.
6
ESCRT-III recognition by VPS4 ATPases.
Nature. 2007 Oct 11;449(7163):740-4. doi: 10.1038/nature06172.
8
Structure and function of ESCRT-III.
Biochem Soc Trans. 2009 Feb;37(Pt 1):156-60. doi: 10.1042/BST0370156.
9
Structural basis for budding by the ESCRT-III factor CHMP3.
Dev Cell. 2006 Jun;10(6):821-30. doi: 10.1016/j.devcel.2006.03.013.

引用本文的文献

1
The bacterial ESCRT-III PspA rods thin lipid tubules and increase membrane curvature through helix α0 interactions.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2506286122. doi: 10.1073/pnas.2506286122. Epub 2025 Aug 4.
2
The expanding repertoire of ESCRT functions in cell biology and disease.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-08950-y.
3
Protocol for HIV-1 budding control by inducible inhibition of ESCRT-III.
STAR Protoc. 2025 May 13;6(2):103808. doi: 10.1016/j.xpro.2025.103808.
5
The Asgard archaeal ESCRT-III system forms helical filaments and remodels eukaryotic-like membranes.
EMBO J. 2025 Feb;44(3):665-681. doi: 10.1038/s44318-024-00346-4. Epub 2025 Jan 3.
6
7
Biomarkers and diagnostic significance of non-coding RNAs in extracellular vesicles of pathologic pregnancy.
J Assist Reprod Genet. 2024 Oct;41(10):2569-2584. doi: 10.1007/s10815-024-03268-6. Epub 2024 Sep 24.
8
Help or Hinder: Protein Host Factors That Impact HIV-1 Replication.
Viruses. 2024 Aug 10;16(8):1281. doi: 10.3390/v16081281.
9
The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers.
Nat Struct Mol Biol. 2025 Mar;32(3):543-554. doi: 10.1038/s41594-024-01367-7. Epub 2024 Jul 26.
10
The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis.
Front Immunol. 2024 Jun 25;15:1417758. doi: 10.3389/fimmu.2024.1417758. eCollection 2024.

本文引用的文献

1
Structural basis for autoinhibition of ESCRT-III CHMP3.
J Mol Biol. 2008 May 9;378(4):818-27. doi: 10.1016/j.jmb.2008.03.030. Epub 2008 Mar 20.
2
ESCRT complexes and the biogenesis of multivesicular bodies.
Curr Opin Cell Biol. 2008 Feb;20(1):4-11. doi: 10.1016/j.ceb.2007.12.002. Epub 2008 Jan 28.
3
Plasma membrane deformation by circular arrays of ESCRT-III protein filaments.
J Cell Biol. 2008 Jan 28;180(2):389-402. doi: 10.1083/jcb.200707031. Epub 2008 Jan 21.
4
A dominant-negative ESCRT-III protein perturbs cytokinesis and trafficking to lysosomes.
Biochem J. 2008 Apr 15;411(2):233-9. doi: 10.1042/BJ20071296.
5
ESCRTing proteins in the endocytic pathway.
Trends Biochem Sci. 2007 Dec;32(12):561-73. doi: 10.1016/j.tibs.2007.09.010. Epub 2007 Nov 7.
6
ESCRT-III recognition by VPS4 ATPases.
Nature. 2007 Oct 11;449(7163):740-4. doi: 10.1038/nature06172.
7
Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4.
Nature. 2007 Oct 11;449(7163):735-9. doi: 10.1038/nature06171.
8
Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis.
EMBO J. 2007 Oct 3;26(19):4215-27. doi: 10.1038/sj.emboj.7601850. Epub 2007 Sep 13.
9
Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery.
Science. 2007 Jun 29;316(5833):1908-12. doi: 10.1126/science.1143422. Epub 2007 Jun 7.
10
Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain.
Traffic. 2007 Aug;8(8):1068-79. doi: 10.1111/j.1600-0854.2007.00584.x. Epub 2007 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验