Suppr超能文献

迈向疟疾流行病学与防控的综合模拟模型。

Towards a comprehensive simulation model of malaria epidemiology and control.

作者信息

Smith T, Maire N, Ross A, Penny M, Chitnis N, Schapira A, Studer A, Genton B, Lengeler C, Tediosi F, de Savigny D, Tanner M

机构信息

Swiss Tropical Institute, Socinstrasse 57, PO. Box, CH-4002 Basel, Switzerland.

出版信息

Parasitology. 2008 Nov;135(13):1507-16. doi: 10.1017/S0031182008000371. Epub 2008 Aug 11.

Abstract

Planning of the control of Plasmodium falciparum malaria leads to a need for models of malaria epidemiology that provide realistic quantitative prediction of likely epidemiological outcomes of a wide range of control strategies. Predictions of the effects of control often ignore medium- and long-term dynamics. The complexities of the Plasmodium life-cycle, and of within-host dynamics, limit the applicability of conventional deterministic malaria models. We use individual-based stochastic simulations of malaria epidemiology to predict the impacts of interventions on infection, morbidity, mortality, health services use and costs. Individual infections are simulated by stochastic series of parasite densities, and naturally acquired immunity acts by reducing densities. Morbidity and mortality risks, and infectiousness to vectors, depend on parasite densities. The simulated infections are nested within simulations of individuals in human populations, and linked to models of interventions and health systems. We use numerous field datasets to optimise parameter estimates. By using a volunteer computing system we obtain the enormous computational power required for model fitting, sensitivity analysis, and exploration of many different intervention strategies. The project thus provides a general platform for comparing, fitting, and evaluating different model structures, and for quantitative prediction of effects of different interventions and integrated control programmes.

摘要

恶性疟原虫疟疾控制规划需要疟疾流行病学模型,这些模型要能对多种控制策略可能产生的流行病学结果做出符合实际的定量预测。对控制效果的预测往往忽略了中长期动态变化。疟原虫生命周期以及宿主体内动态变化的复杂性,限制了传统确定性疟疾模型的适用性。我们使用基于个体的疟疾流行病学随机模拟,来预测干预措施对感染、发病率、死亡率、卫生服务利用和成本的影响。个体感染通过寄生虫密度的随机序列进行模拟,自然获得的免疫力通过降低密度发挥作用。发病和死亡风险以及对媒介的传染性取决于寄生虫密度。模拟的感染嵌套在人群个体的模拟中,并与干预措施和卫生系统模型相关联。我们使用大量实地数据集来优化参数估计。通过使用志愿者计算系统,我们获得了模型拟合、敏感性分析以及探索许多不同干预策略所需的巨大计算能力。该项目因此提供了一个通用平台,用于比较、拟合和评估不同的模型结构,以及对不同干预措施和综合控制项目的效果进行定量预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验