Suppr超能文献

马萨诸塞州科德角上游地区乳腺癌的时空分析。

Spatial-temporal analysis of breast cancer in upper Cape Cod, Massachusetts.

作者信息

Vieira Verónica M, Webster Thomas F, Weinberg Janice M, Aschengrau Ann

机构信息

Department of Environmental Health, Boston University School of Public Health, Talbot 4W, 715 Albany Street, Boston, MA 02118, USA.

出版信息

Int J Health Geogr. 2008 Aug 13;7:46. doi: 10.1186/1476-072X-7-46.

Abstract

INTRODUCTION

The reasons for elevated breast cancer rates in the upper Cape Cod area of Massachusetts remain unknown despite several epidemiological studies that investigated possible environmental risk factors. Data from two of these population-based case-control studies provide geocoded residential histories and information on confounders, creating an invaluable dataset for spatial-temporal analysis of participants' residency over five decades.

METHODS

The combination of statistical modeling and mapping is a powerful tool for visualizing disease risk in a spatial-temporal analysis. Advances in geographic information systems (GIS) enable spatial analytic techniques in public health studies previously not feasible. Generalized additive models (GAMs) are an effective approach for modeling spatial and temporal distributions of data, combining a number of desirable features including smoothing of geographical location, residency duration, or calendar years; the ability to estimate odds ratios (ORs) while adjusting for confounders; selection of optimum degree of smoothing (span size); hypothesis testing; and use of standard software. We conducted a spatial-temporal analysis of breast cancer case-control data using GAMs and GIS to determine the association between participants' residential history during 1947-1993 and the risk of breast cancer diagnosis during 1983-1993. We considered geographic location alone in a two-dimensional space-only analysis. Calendar year, represented by the earliest year a participant lived in the study area, and residency duration in the study area were modeled individually in one-dimensional time-only analyses, and together in a two-dimensional time-only analysis. We also analyzed space and time together by applying a two-dimensional GAM for location to datasets of overlapping calendar years. The resulting series of maps created a movie which allowed us to visualize changes in magnitude, geographic size, and location of elevated breast cancer risk for the 40 years of residential history that was smoothed over space and time.

RESULTS

The space-only analysis showed statistically significant increased areas of breast cancer risk in the northern part of upper Cape Cod and decreased areas of breast cancer risk in the southern part (p-value = 0.04; ORs: 0.90-1.40). There was also a significant association between breast cancer risk and calendar year (p-value = 0.05; ORs: 0.53-1.38), with earlier calendar years resulting in higher risk. The results of the one-dimensional analysis of residency duration and the two-dimensional analysis of calendar year and duration showed that the risk of breast cancer increased with increasing residency duration, but results were not statistically significant. When we considered space and time together, the maps showed a large area of statistically significant elevated risk for breast cancer near the Massachusetts Military Reservation (p-value range:0.02-0.05; ORs range: 0.25-2.5). This increased risk began with residences in the late 1940s and remained consistent in size and location through the late 1950s.

CONCLUSION

Spatial-temporal analysis of the breast cancer data may help identify new exposure hypotheses that warrant future epidemiologic investigations with detailed exposure models. Our methods allow us to visualize breast cancer risk, adjust for known confounders including age at diagnosis or index year, family history of breast cancer, parity and age at first live- or stillbirth, and test for the statistical significance of location and time. Despite the advantages of GAMs, analyses are for exploratory purposes and there are still methodological issues that warrant further research. This paper illustrates that GAM methods are a suitable alternative to widely-used cluster detection methods and may be preferable when residential histories from existing epidemiological studies are available.

摘要

引言

尽管有多项流行病学研究调查了可能的环境风险因素,但马萨诸塞州科德角地区乳腺癌发病率升高的原因仍不明确。这两项基于人群的病例对照研究的数据提供了地理编码的居住史和混杂因素信息,为对参与者超过五十年居住情况的时空分析创建了一个非常宝贵的数据集。

方法

统计建模与地图绘制相结合是在时空分析中可视化疾病风险的有力工具。地理信息系统(GIS)的发展使公共卫生研究中的空间分析技术以前所未有的方式得以实现。广义相加模型(GAMs)是对数据的空间和时间分布进行建模的有效方法,它结合了许多理想的特征,包括对地理位置、居住时长或历年的平滑处理;在调整混杂因素的同时估计比值比(OR)的能力;选择最佳平滑度(跨度大小);假设检验;以及使用标准软件。我们使用GAMs和GIS对乳腺癌病例对照数据进行了时空分析,以确定1947 - 1993年期间参与者的居住史与1983 - 1993年期间乳腺癌诊断风险之间的关联。在仅二维空间的分析中,我们仅考虑地理位置。在仅一维时间的分析中,分别对以参与者最早居住在研究区域的年份表示的历年和在研究区域的居住时长进行建模,在仅二维时间的分析中则将二者一起建模。我们还通过将二维GAM应用于重叠历年的数据集来同时分析空间和时间。由此生成的一系列地图形成了一部动态影像,使我们能够可视化在空间和时间上经过平滑处理的40年居住史中乳腺癌风险升高的幅度、地理范围和位置的变化。

结果

仅空间分析显示,科德角北部乳腺癌风险增加的区域具有统计学意义,而南部乳腺癌风险降低的区域也具有统计学意义(p值 = 0.04;OR:0.90 - 1.40)。乳腺癌风险与历年之间也存在显著关联(p值 = 0.05;OR:0.53 - 1.38),较早的历年导致更高的风险。居住时长的一维分析以及历年和居住时长的二维分析结果表明,乳腺癌风险随居住时长增加而升高,但结果无统计学意义。当我们同时考虑空间和时间时,地图显示在马萨诸塞军事保留地附近有大片区域乳腺癌风险显著升高(p值范围:0.02 - 0.05;OR范围:0.25 - 2.5)。这种风险增加始于20世纪40年代后期的居住情况,并在整个50年代后期在大小和位置上保持一致。

结论

对乳腺癌数据的时空分析可能有助于识别新的暴露假设,这些假设值得未来通过详细的暴露模型进行流行病学调查。我们的方法使我们能够可视化乳腺癌风险,调整已知的混杂因素,包括诊断年龄或索引年份、乳腺癌家族史、生育次数以及首次活产或死产时的年龄,并检验位置和时间的统计学意义。尽管GAMs有诸多优点,但分析仅用于探索目的,仍存在一些方法学问题值得进一步研究。本文表明,GAM方法是广泛使用的聚类检测方法的合适替代方法,当现有流行病学研究中有居住史数据时可能更具优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1af4/2538515/a72102d4a98d/1476-072X-7-46-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验