Suppr超能文献

线粒体NADH荧光通过与复合体I结合而增强。

Mitochondrial NADH fluorescence is enhanced by complex I binding.

作者信息

Blinova Ksenia, Levine Rodney L, Boja Emily S, Griffiths Gary L, Shi Zhen-Dan, Ruddy Brian, Balaban Robert S

机构信息

Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.

出版信息

Biochemistry. 2008 Sep 9;47(36):9636-45. doi: 10.1021/bi800307y. Epub 2008 Aug 15.

Abstract

Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several-fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10-fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state.

摘要

线粒体NADH荧光一直是评估体外和体内线粒体能量学的有用工具。通过延长荧光寿命(EFL),线粒体NADH荧光在基质中增强了几倍。然而,负责NADH EFL的实际结合位点尚不清楚。我们测试了NADH与复合体I结合是线粒体NADH荧光增强的重要来源这一假设。为了验证这一假设,在纯化的蛋白质以及整个猪心脏线粒体蛋白质组的天然凝胶中评估了复合体I结合对NADH荧光效率的影响。为了避免这些制剂中NADH的氧化,我们在一个专门设计的装置中在缺氧条件下进行了结合实验。纯化的完整复合体I在天然凝胶中使NADH荧光增强了约10倍。然而,在变性的单个复合体I亚基蛋白中未检测到增强。在整个线粒体蛋白质组的清晰和幽灵天然凝胶中,NADH荧光增强定位于有氧存在时发生NADH氧化的区域。抑制剂和质谱研究表明,荧光增强对复合体I蛋白具有特异性。在该测定系统中,在基质蛋白的生理摩尔分数下,未检测到MDH或其他脱氢酶的荧光增强。这些数据表明,与复合体I相关的NADH对整体线粒体NADH荧光信号有显著贡献,并为线粒体NADH荧光与代谢状态之间已确立的密切相关性提供了解释。

相似文献

1
Mitochondrial NADH fluorescence is enhanced by complex I binding.
Biochemistry. 2008 Sep 9;47(36):9636-45. doi: 10.1021/bi800307y. Epub 2008 Aug 15.
3
6
A novel strong competitive inhibitor of complex I.
FEBS Lett. 2005 Aug 29;579(21):4861-6. doi: 10.1016/j.febslet.2005.07.076.
7
Blue native electrophoresis to study mitochondrial complex I in C. elegans.
Anal Biochem. 2010 Dec 15;407(2):287-9. doi: 10.1016/j.ab.2010.08.009. Epub 2010 Aug 10.
8
Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
Biochemistry. 2011 Dec 20;50(50):10792-803. doi: 10.1021/bi201714w. Epub 2011 Nov 28.
9
Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
Biochemistry (Mosc). 2005 Feb;70(2):120-7. doi: 10.1007/s10541-005-0090-7.
10
Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
Biochim Biophys Acta. 2014 Mar;1837(3):354-65. doi: 10.1016/j.bbabio.2013.11.006. Epub 2013 Dec 17.

引用本文的文献

1
Label-free metabolic fingerprinting of motile mammalian spermatozoa with subcellular resolution.
BMC Biol. 2025 Mar 24;23(1):85. doi: 10.1186/s12915-025-02167-1.
2
Metabolic changes in -infected host cells measured by autofluorescence imaging.
mBio. 2024 Aug 14;15(8):e0072724. doi: 10.1128/mbio.00727-24. Epub 2024 Jul 8.
5
Label-free single-cell live imaging reveals fast metabolic switch in T lymphocytes.
Mol Biol Cell. 2024 Jan 1;35(1):ar11. doi: 10.1091/mbc.E23-01-0009. Epub 2023 Nov 16.
6
Exercise-induced changes to the fiber type-specific redox state in human skeletal muscle are associated with aerobic capacity.
J Appl Physiol (1985). 2023 Sep 1;135(3):508-518. doi: 10.1152/japplphysiol.00662.2022. Epub 2023 Jul 20.
7
Label-Free Optical Metabolic Imaging in Cells and Tissues.
Annu Rev Biomed Eng. 2023 Jun 8;25:413-443. doi: 10.1146/annurev-bioeng-071516-044730. Epub 2023 Apr 27.
8
Multimodal analyses of vitiligo skin identify tissue characteristics of stable disease.
JCI Insight. 2022 Jul 8;7(13):e154585. doi: 10.1172/jci.insight.154585.
9
How many molecules of mitochondrial complex I are in a cell?
Anal Biochem. 2022 Jun 1;646:114646. doi: 10.1016/j.ab.2022.114646. Epub 2022 Mar 5.
10
Energy homeostasis is a conserved process: Evidence from Paracoccus denitrificans' response to acute changes in energy demand.
PLoS One. 2021 Nov 8;16(11):e0259636. doi: 10.1371/journal.pone.0259636. eCollection 2021.

本文引用的文献

1
In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19494-9. doi: 10.1073/pnas.0708425104. Epub 2007 Nov 27.
2
High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes.
Mol Cell Proteomics. 2007 Jul;6(7):1215-25. doi: 10.1074/mcp.M700076-MCP200. Epub 2007 Apr 9.
3
Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain.
Biochemistry. 2007 Mar 6;46(9):2275-88. doi: 10.1021/bi602508x. Epub 2007 Feb 3.
4
Fluorescence spectroscopy and imaging of myocardial apoptosis.
J Biomed Opt. 2006 Nov-Dec;11(6):064036. doi: 10.1117/1.2400701.
5
Maintenance of the metabolic homeostasis of the heart: developing a systems analysis approach.
Ann N Y Acad Sci. 2006 Oct;1080:140-53. doi: 10.1196/annals.1380.013.
6
Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C615-40. doi: 10.1152/ajpcell.00249.2006. Epub 2006 Aug 30.
7
Tissue heterogeneity of the mammalian mitochondrial proteome.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C689-97. doi: 10.1152/ajpcell.00108.2006. Epub 2006 Aug 23.
8
NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function.
J Cereb Blood Flow Metab. 2006 Nov;26(11):1389-406. doi: 10.1038/sj.jcbfm.9600292. Epub 2006 Mar 15.
9
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus.
Science. 2006 Mar 10;311(5766):1430-6. doi: 10.1126/science.1123809. Epub 2006 Feb 9.
10
Advantages and limitations of clear-native PAGE.
Proteomics. 2005 Nov;5(17):4338-46. doi: 10.1002/pmic.200500081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验