Suppr超能文献

异氟烷通过选择性减弱呼吸复合物来调节心脏线粒体生物能量学。

Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.

作者信息

Agarwal Bhawana, Dash Ranjan K, Stowe David F, Bosnjak Zeljko J, Camara Amadou K S

机构信息

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.

Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.

出版信息

Biochim Biophys Acta. 2014 Mar;1837(3):354-65. doi: 10.1016/j.bbabio.2013.11.006. Epub 2013 Dec 17.

Abstract

Mitochondrial dysfunction contributes to cardiac ischemia-reperfusion (IR) injury but volatile anesthetics (VA) may alter mitochondrial function to trigger cardioprotection. We hypothesized that the VA isoflurane (ISO) mediates cardioprotection in part by altering the function of several respiratory and transport proteins involved in oxidative phosphorylation (OxPhos). To test this we used fluorescence spectrophotometry to measure the effects of ISO (0, 0.5, 1, 2mM) on the time-course of interlinked mitochondrial bioenergetic variables during states 2, 3 and 4 respiration in the presence of either complex I substrate K(+)-pyruvate/malate (PM) or complex II substrate K(+)-succinate (SUC) at physiological levels of extra-matrix free Ca(2+) (~200nM) and Na(+) (10mM). To mimic ISO effects on mitochondrial functions and to clearly delineate the possible ISO targets, the observed actions of ISO were interpreted by comparing effects of ISO to those elicited by low concentrations of inhibitors that act at each respiratory complex, e.g. rotenone (ROT) at complex I or antimycin A (AA) at complex III. Our conclusions are based primarily on the similar responses of ISO and titrated concentrations of ETC. inhibitors during state 3. We found that with the substrate PM, ISO and ROT similarly decreased the magnitude of state 3 NADH oxidation and increased the duration of state 3 NADH oxidation, ΔΨm depolarization, and respiration in a concentration-dependent manner, whereas with substrate SUC, ISO and ROT decreased the duration of state 3 NADH oxidation, ΔΨm depolarization and respiration. Unlike AA, ISO reduced the magnitude of state 3 NADH oxidation with PM or SUC as substrate. With substrate SUC, after complete block of complex I with ROT, ISO and AA similarly increased the duration of state 3 ΔΨm depolarization and respiration. This study provides a mechanistic understanding in how ISO alters mitochondrial function in a way that may lead to cardioprotection.

摘要

线粒体功能障碍会导致心脏缺血再灌注(IR)损伤,但挥发性麻醉剂(VA)可能会改变线粒体功能从而引发心脏保护作用。我们推测挥发性麻醉剂异氟烷(ISO)部分通过改变参与氧化磷酸化(OxPhos)的几种呼吸和转运蛋白的功能来介导心脏保护作用。为了验证这一点,我们使用荧光分光光度法在基质外游离钙(~200nM)和钠(10mM)的生理水平下,测量ISO(0、0.5、1、2mM)对存在复合体I底物K(+) - 丙酮酸/苹果酸(PM)或复合体II底物K(+) - 琥珀酸(SUC)时状态2、3和4呼吸过程中相互关联的线粒体生物能量学变量随时间变化的影响。为了模拟ISO对线粒体功能的影响并清晰界定可能的ISO作用靶点,通过将ISO的作用与低浓度作用于每个呼吸复合体的抑制剂(例如复合体I处的鱼藤酮(ROT)或复合体III处的抗霉素A(AA))所引发的作用进行比较,来解释观察到的ISO作用。我们的结论主要基于状态3期间ISO和滴定浓度的电子传递链(ETC)抑制剂的相似反应。我们发现,使用底物PM时,ISO和ROT同样以浓度依赖的方式降低状态3 NADH氧化的幅度,并增加状态3 NADH氧化的持续时间、线粒体膜电位(ΔΨm)去极化和呼吸作用;而使用底物SUC时,ISO和ROT则降低状态3 NADH氧化的持续时间、ΔΨm去极化和呼吸作用。与AA不同,以PM或SUC为底物时,ISO会降低状态3 NADH氧化的幅度。以底物SUC时,在用ROT完全阻断复合体I后,ISO和AA同样增加状态3 ΔΨm去极化和呼吸作用的持续时间。这项研究为ISO如何以可能导致心脏保护的方式改变线粒体功能提供了机制上的理解。

相似文献

1
Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
Biochim Biophys Acta. 2014 Mar;1837(3):354-65. doi: 10.1016/j.bbabio.2013.11.006. Epub 2013 Dec 17.
2
Enhanced charge-independent mitochondrial free Ca(2+) and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection.
Biochim Biophys Acta. 2012 Mar;1817(3):453-65. doi: 10.1016/j.bbabio.2011.11.011. Epub 2011 Dec 2.
4
Monitoring mitochondrial electron fluxes using NAD(P)H-flavoprotein fluorometry reveals complex action of isoflurane on cardiomyocytes.
Biochim Biophys Acta. 2010 Oct;1797(10):1749-58. doi: 10.1016/j.bbabio.2010.07.009. Epub 2010 Jul 17.
5
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Meat Sci. 2015 Jul;105:89-92. doi: 10.1016/j.meatsci.2015.02.012. Epub 2015 Mar 3.
6
8
Generation of superoxide by the mitochondrial Complex I.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):553-61. doi: 10.1016/j.bbabio.2006.03.013. Epub 2006 Apr 17.
9
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6. doi: 10.1152/ajpcell.00211.2007. Epub 2007 Dec 12.
10
Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria.
Eur J Pharmacol. 2012 Sep 5;690(1-3):149-57. doi: 10.1016/j.ejphar.2012.07.003. Epub 2012 Jul 11.

引用本文的文献

2
Metabolomic profiling reveals muscle metabolic changes following iliac arteriovenous fistula creation in mice.
Am J Physiol Renal Physiol. 2022 Nov 1;323(5):F577-F589. doi: 10.1152/ajprenal.00156.2022. Epub 2022 Aug 25.
4
Substrate-dependent differential regulation of mitochondrial bioenergetics in the heart and kidney cortex and outer medulla.
Biochim Biophys Acta Bioenerg. 2022 Feb 1;1863(2):148518. doi: 10.1016/j.bbabio.2021.148518. Epub 2021 Dec 3.
5
Ageing, sex, and cardioprotection.
Br J Pharmacol. 2020 Dec;177(23):5270-5286. doi: 10.1111/bph.14951. Epub 2020 Feb 3.
6
Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies.
Int J Mol Sci. 2019 Oct 11;20(20):5034. doi: 10.3390/ijms20205034.
10
Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats.
J Cereb Blood Flow Metab. 2019 Jun;39(6):1056-1068. doi: 10.1177/0271678X17745028. Epub 2017 Dec 7.

本文引用的文献

1
Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria.
J Bioenerg Biomembr. 2013 Jun;45(3):203-18. doi: 10.1007/s10863-013-9500-5. Epub 2013 Mar 3.
2
Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I.
Biochim Biophys Acta. 2013 Mar;1827(3):446-54. doi: 10.1016/j.bbabio.2013.01.002. Epub 2013 Jan 10.
3
Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release.
J Bioenerg Biomembr. 2013 Jun;45(3):189-202. doi: 10.1007/s10863-012-9483-7. Epub 2012 Dec 7.
4
Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen species generation.
Free Radic Biol Med. 2013 Mar;56:193-203. doi: 10.1016/j.freeradbiomed.2012.09.020. Epub 2012 Sep 23.
5
The role of Volatile Anesthetics in Cardioprotection: a systematic review.
Med Gas Res. 2012 Aug 28;2(1):22. doi: 10.1186/2045-9912-2-22.
6
Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria.
Eur J Pharmacol. 2012 Sep 5;690(1-3):149-57. doi: 10.1016/j.ejphar.2012.07.003. Epub 2012 Jul 11.
7
Enhanced charge-independent mitochondrial free Ca(2+) and attenuated ADP-induced NADH oxidation by isoflurane: Implications for cardioprotection.
Biochim Biophys Acta. 2012 Mar;1817(3):453-65. doi: 10.1016/j.bbabio.2011.11.011. Epub 2011 Dec 2.
9
Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I).
J Biol Chem. 2011 Aug 5;286(31):27103-10. doi: 10.1074/jbc.M111.252502. Epub 2011 Jun 8.
10
Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury.
Front Physiol. 2011 Apr 12;2:13. doi: 10.3389/fphys.2011.00013. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验