Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
Biochemistry. 2013 Jun 11;52(23):4048-55. doi: 10.1021/bi3016873. Epub 2013 May 30.
ubiquinone oxidoreductase (complex I) is a complicated respiratory enzyme that conserves the energy from NADH oxidation, coupled to ubiquinone reduction, as a proton motive force across the mitochondrial inner membrane. During catalysis, NADH oxidation by a flavin mononucleotide is followed by electron transfer to a chain of iron-sulfur clusters. Alternatively, the flavin may be reoxidized by hydrophilic electron acceptors, by artificial electron acceptors in kinetic studies, or by oxygen and redox-cycling molecules to produce reactive oxygen species. Here, we study two steps in the mechanism of NADH oxidation by complex I. First, molecular fragments of NAD(H), tested as flavin-site inhibitors or substrates, reveal that the adenosine moiety is crucial for binding. Nicotinamide-containing fragments that lack the adenosine do not bind, and ADP-ribose binds more strongly than NAD(+), suggesting that the nicotinamide is detrimental to binding. Second, the primary kinetic isotope effects from deuterated nicotinamide nucleotides confirm that hydride transfer is from the pro-S position and reveal that hydride transfer, along with NAD(+) dissociation, is partially rate-limiting. Thus, the transition state energies are balanced so that no single step in NADH oxidation is completely rate-limiting. Only at very low NADH concentrations does weak NADH binding limit NADH:ubiquinone oxidoreduction, and at the high nucleotide concentrations of the mitochondrial matrix, weak nucleotide binding constants assist product dissociation. Using fast nucleotide reactions and a balance between the nucleotide binding constants and concentrations, complex I combines fast and energy-conserving NADH oxidation with minimal superoxide production from the nucleotide-free site.
泛醌氧化还原酶(复合物 I)是一种复杂的呼吸酶,它将 NADH 氧化产生的能量与泛醌还原相偶联,形成质子动力势穿过线粒体内膜。在催化过程中,黄素单核苷酸氧化 NADH 后,电子转移到一系列铁硫簇上。或者,黄素可能被亲水电子受体、动力学研究中的人工电子受体或氧和氧化还原循环分子重新氧化,产生活性氧物种。在这里,我们研究了复合物 I 氧化 NADH 的机制中的两个步骤。首先,作为黄素部位抑制剂或底物进行测试的 NAD(H)分子片段表明,腺苷部分对于结合至关重要。缺乏腺苷的含烟酰胺片段不结合,而 ADP-核糖比 NAD(+)结合得更牢固,这表明烟酰胺不利于结合。其次,氘代烟酰胺核苷酸的主要动力学同位素效应证实了氢化物转移来自 pro-S 位置,并揭示了氢化物转移以及 NAD(+)解离是部分限速步骤。因此,过渡态能量平衡,使得氧化 NADH 过程中的单个步骤都不是完全限速的。只有在非常低的 NADH 浓度下,弱 NADH 结合才会限制 NADH:泛醌氧化还原,而在线粒体基质的高核苷酸浓度下,弱核苷酸结合常数有助于产物解离。通过快速核苷酸反应以及核苷酸结合常数和浓度之间的平衡,复合物 I 将快速且节能的 NADH 氧化与核苷酸游离部位最小的超氧化物生成结合在一起。