Suppr超能文献

基于神经网络的视网膜图像中硬性渗出物检测

Neural network based detection of hard exudates in retinal images.

作者信息

García María, Sánchez Clara I, López María I, Abásolo Daniel, Hornero Roberto

机构信息

Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Campus Miguel Delibes, Camino del Cementerio s/n, Valladolid, Spain.

出版信息

Comput Methods Programs Biomed. 2009 Jan;93(1):9-19. doi: 10.1016/j.cmpb.2008.07.006. Epub 2008 Sep 7.

Abstract

Diabetic retinopathy (DR) is an important cause of visual impairment in developed countries. Automatic recognition of DR lesions in fundus images can contribute to the diagnosis of the disease. The aim of this study is to automatically detect one of these lesions, hard exudates (EXs), in order to help ophthalmologists in the diagnosis and follow-up of the disease. We propose an algorithm which includes a neural network (NN) classifier for this task. Three NN classifiers were investigated: multilayer perceptron (MLP), radial basis function (RBF) and support vector machine (SVM). Our database was composed of 117 images with variable colour, brightness, and quality. 50 of them (from DR patients) were used to train the NN classifiers and 67 (40 from DR patients and 27 from healthy retinas) to test the method. Using a lesion-based criterion, we achieved a mean sensitivity (SE(l)) of 88.14% and a mean positive predictive value (PPV(l)) of 80.72% for MLP. With RBF we obtained SE(l)=88.49% and PPV(l)=77.41%, while we reached SE(l)=87.61% and PPV(l)=83.51% using SVM. With an image-based criterion, a mean sensitivity (SE(i)) of 100%, a mean specificity (SP(i)) of 92.59% and a mean accuracy (AC(i)) of 97.01% were obtained with MLP. Using RBF we achieved SE(i)=100%, SP(i)=81.48% and AC(i)=92.54%. With SVM the image-based results were SE(i)=100%, SP(i)=77.78% and AC(i)=91.04%.

摘要

糖尿病性视网膜病变(DR)是发达国家视力损害的一个重要原因。眼底图像中DR病变的自动识别有助于疾病的诊断。本研究的目的是自动检测其中一种病变——硬性渗出物(EXs),以帮助眼科医生进行疾病的诊断和随访。我们提出了一种为此任务包含神经网络(NN)分类器的算法。研究了三种NN分类器:多层感知器(MLP)、径向基函数(RBF)和支持向量机(SVM)。我们的数据库由117张颜色、亮度和质量各异的图像组成。其中50张(来自DR患者)用于训练NN分类器,67张(40张来自DR患者,27张来自健康视网膜)用于测试该方法。使用基于病变的标准,MLP的平均灵敏度(SE(l))为88.14%,平均阳性预测值(PPV(l))为80.72%。对于RBF,我们得到SE(l)=88.49%,PPV(l)=77.41%,而使用SVM时,我们达到SE(l)=87.61%,PPV(l)=83.51%。使用基于图像的标准,MLP获得的平均灵敏度(SE(i))为100%,平均特异性(SP(i))为92.59%,平均准确率(AC(i))为97.01%。使用RBF时,我们实现了SE(i)=100%,SP(i)=81.48%,AC(i)=92.54%。对于SVM,基于图像的结果为SE(i)=100%,SP(i)=77.78%,AC(i)=91.04%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验