Suppr超能文献

基于 SVM 预测的糖尿病性视网膜病变眼底图像分类。

Retinal fundus image classification for diabetic retinopathy using SVM predictions.

机构信息

Electronics & Communication Engineering, Sir Padampat Singhania University, Udaipur, Rajasthan, India.

出版信息

Phys Eng Sci Med. 2022 Sep;45(3):781-791. doi: 10.1007/s13246-022-01143-1. Epub 2022 Jun 9.

Abstract

Diabetic Retinopathy (DR) is one of the leading causes of blindness in all age groups. Inadequate blood supply to the retina, retinal vascular exudation, and intraocular hemorrhage cause DR. Despite recent advances in the diagnosis and treatment of DR, this complication remains a challenging task for physicians and patients. Hence, a comprehensive and automated technique for DR screening is necessary, which will give early detection of this disease. The proposed work focuses on 16 class classification method using Support Vector Machine (SVM) that predict abnormalities individually or in combination based on the selected class. Our proposed work comprises Gaussian mixture model (GMM), K-means, Maximum a Posteriori (MAP) algorithm, Principal Component Analysis (PCA), Grey level co-occurrence matrix (GLCM), and SVM for disease diagnosis using DR. The proposed method provides an accuracy of 77.3% on DIARETDB1 dataset. We expect this low computational cost will be helpful in the medicine and diagnosis of DR.

摘要

糖尿病视网膜病变(DR)是所有年龄段人群致盲的主要原因之一。视网膜血管渗出和眼内出血导致视网膜供血不足,引起 DR。尽管 DR 的诊断和治疗最近取得了进展,但这种并发症仍然是医生和患者面临的一项挑战。因此,需要一种全面和自动化的 DR 筛查技术,以便早期发现这种疾病。本研究工作专注于使用支持向量机(SVM)的 16 类分类方法,该方法根据所选类别单独或组合预测异常。我们的研究工作包括高斯混合模型(GMM)、K-均值、最大后验概率(MAP)算法、主成分分析(PCA)、灰度共生矩阵(GLCM)和 SVM,用于使用 DR 进行疾病诊断。该方法在 DIARETDB1 数据集上的准确率达到 77.3%。我们希望这种低计算成本将有助于 DR 的医学和诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验