Suppr超能文献

物理偶联支持心肌中肌浆网亚结构域与线粒体之间的局部钙离子转移。

Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle.

作者信息

García-Pérez Cecilia, Hajnóczky György, Csordás György

机构信息

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

出版信息

J Biol Chem. 2008 Nov 21;283(47):32771-80. doi: 10.1074/jbc.M803385200. Epub 2008 Sep 12.

Abstract

In many cell types, transfer of Ca(2+) released via ryanodine receptors (RyR) to the mitochondrial matrix is locally supported by high [Ca(2+)] microdomains at close contacts between the sarcoplasmic reticulum (SR) and mitochondria. Here we studied whether the close contacts were secured via direct physical coupling in cardiac muscle using isolated rat heart mitochondria (RHMs). "Immuno-organelle chemistry" revealed RyR2 and calsequestrin-positive SR particles associated with mitochondria in both crude and Percoll-purified "heavy" mitochondrial fractions (cRHM and pRHM), to a smaller extent in the latter one. Mitochondria-associated vesicles were also visualized by electron microscopy in the RHMs. Western blot analysis detected greatly reduced presence of SR markers (calsequestrin, SERCA2a, and phospholamban) in pRHM, suggesting that the mitochondria-associated particles represented a small subfraction of the SR. Fluorescence calcium imaging in rhod2-loaded cRHM revealed mitochondrial matrix [Ca(2+)] (Ca(2+)) responses to caffeine-induced Ca(2+) release that were prevented when thapsigargin was added to predeplete the SR or by mitochondrial Ca(2+) uptake inhibitors. Importantly, caffeine failed to increase [Ca(2+)] in the large volume of the incubation medium, suggesting that local Ca(2+) transfer between the SR particles and mitochondria mediated the Ca(2+) signal. Despite the substantially reduced SR presence, pRHM still displayed a caffeine-induced Ca(2+) rise comparable with the one recorded in cRHM. Thus, a relatively small fraction of the total SR is physically coupled and transfers Ca(2+) locally to the mitochondria in cardiac muscle. The transferred Ca(2+) stimulates dehydrogenase activity and affects mitochondrial membrane permeabilization, indicating the broad significance of the physical coupling in mitochondrial function.

摘要

在许多细胞类型中,通过兰尼碱受体(RyR)释放的Ca(2+)向线粒体基质的转移在肌浆网(SR)与线粒体紧密接触处的高[Ca(2+)]微区中得到局部支持。在此,我们利用分离的大鼠心脏线粒体(RHM)研究了心肌中紧密接触是否通过直接物理偶联得以维持。“免疫细胞器化学”显示,在粗制和经Percoll纯化的“重”线粒体组分(cRHM和pRHM)中,RyR2和肌集钙蛋白阳性的SR颗粒与线粒体相关,后者中的程度较小。通过电子显微镜也在RHM中观察到了线粒体相关囊泡。蛋白质印迹分析检测到pRHM中SR标志物(肌集钙蛋白、SERCA2a和受磷蛋白)的存在大幅减少,表明线粒体相关颗粒代表了SR的一个小亚组分。在加载rhod2的cRHM中进行的荧光钙成像显示,线粒体基质[Ca(2+)](Ca(2+))对咖啡因诱导的Ca(2+)释放有反应,当加入毒胡萝卜素预先耗尽SR或使用线粒体Ca(2+)摄取抑制剂时,这种反应被阻止。重要的是,咖啡因未能增加大量孵育培养基中的[Ca(2+)],表明SR颗粒与线粒体之间的局部Ca(2+)转移介导了Ca(2+)信号。尽管SR的存在大幅减少,但pRHM仍显示出与cRHM中记录的相当的咖啡因诱导的Ca(2+)升高。因此,在心肌中,总SR中相对较小的一部分通过物理偶联并将Ca(2+)局部转移至线粒体。转移的Ca(2+)刺激脱氢酶活性并影响线粒体膜通透性,表明物理偶联在线粒体功能中具有广泛意义。

相似文献

1
Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle.
J Biol Chem. 2008 Nov 21;283(47):32771-80. doi: 10.1074/jbc.M803385200. Epub 2008 Sep 12.
2
Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1907-15. doi: 10.1152/ajpheart.00397.2011. Epub 2011 Aug 19.
3
Switch from ER-mitochondrial to SR-mitochondrial calcium coupling during muscle differentiation.
Cell Calcium. 2012 Nov;52(5):355-65. doi: 10.1016/j.ceca.2012.05.012. Epub 2012 Jul 10.
4
Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle.
J Biol Chem. 2016 Oct 28;291(44):23343-23362. doi: 10.1074/jbc.M116.755496. Epub 2016 Sep 16.
7
The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca-ATPase, is a major determinant of Ca alternans in intact mouse hearts.
J Biol Chem. 2018 Aug 31;293(35):13650-13661. doi: 10.1074/jbc.RA118.003760. Epub 2018 Jul 9.
8
Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes.
J Bioenerg Biomembr. 2000 Feb;32(1):97-104. doi: 10.1023/a:1005520714221.
9
Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
J Physiol. 2003 Aug 1;550(Pt 3):765-83. doi: 10.1113/jphysiol.2003.040345. Epub 2003 Jun 24.
10
Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle.
Trends Cardiovasc Med. 2001 Oct;11(7):269-75. doi: 10.1016/s1050-1738(01)00123-2.

引用本文的文献

1
Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications.
Int J Mol Sci. 2025 Mar 26;26(7):3016. doi: 10.3390/ijms26073016.
2
Intracellular Membrane Contact Sites in Skeletal Muscle Cells.
Membranes (Basel). 2025 Jan 14;15(1):29. doi: 10.3390/membranes15010029.
3
Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases.
Neural Regen Res. 2025 Dec 1;20(12):3349-3369. doi: 10.4103/NRR.NRR-D-24-00630. Epub 2024 Nov 13.
5
Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease.
Nat Cardiovasc Res. 2024 May;3(5):500-514. doi: 10.1038/s44161-024-00463-7. Epub 2024 May 1.
7
Distinct Roles of DRP1 in Conventional and Alternative Mitophagy in Obesity Cardiomyopathy.
Circ Res. 2023 Jun 23;133(1):6-21. doi: 10.1161/CIRCRESAHA.123.322512. Epub 2023 May 26.
8
Adapting to a new environment: postnatal maturation of the human cardiomyocyte.
J Physiol. 2023 Jul;601(13):2593-2619. doi: 10.1113/JP283792. Epub 2023 Apr 9.
10
Intracellular to Interorgan Mitochondrial Communication in Striated Muscle in Health and Disease.
Endocr Rev. 2023 Jul 11;44(4):668-692. doi: 10.1210/endrev/bnad004.

本文引用的文献

1
High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling.
Cell Calcium. 2008 Jul;44(1):51-63. doi: 10.1016/j.ceca.2007.11.015. Epub 2008 Feb 19.
2
Mitochondrial Ca2+ and the heart.
Cell Calcium. 2008 Jul;44(1):77-91. doi: 10.1016/j.ceca.2007.11.002. Epub 2008 Feb 21.
3
ER-mitochondria communication. How privileged?
Physiology (Bethesda). 2007 Aug;22:261-8. doi: 10.1152/physiol.00017.2007.
4
Excitation-contraction coupling and mitochondrial energetics.
Basic Res Cardiol. 2007 Sep;102(5):369-92. doi: 10.1007/s00395-007-0666-z. Epub 2007 Jul 27.
5
The mitochondrial ryanodine receptor in rat heart: a pharmaco-kinetic profile.
Biochim Biophys Acta. 2007 Jul;1768(7):1784-95. doi: 10.1016/j.bbamem.2007.04.011. Epub 2007 Apr 19.
6
Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels.
J Cell Biol. 2006 Dec 18;175(6):901-11. doi: 10.1083/jcb.200608073.
7
Structural and functional features and significance of the physical linkage between ER and mitochondria.
J Cell Biol. 2006 Sep 25;174(7):915-21. doi: 10.1083/jcb.200604016. Epub 2006 Sep 18.
8
Microdomains of intracellular Ca2+: molecular determinants and functional consequences.
Physiol Rev. 2006 Jan;86(1):369-408. doi: 10.1152/physrev.00004.2005.
9
Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling.
Biochim Biophys Acta. 2005 Nov 10;1717(1):1-10. doi: 10.1016/j.bbamem.2005.09.016. Epub 2005 Oct 11.
10
Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle.
J Biol Chem. 2006 Jan 20;281(3):1547-54. doi: 10.1074/jbc.M505024200. Epub 2005 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验