Suppr超能文献

基于图神经网络和基因组代谢模型的基因必需性预测方法。

Integration of graph neural networks and genome-scale metabolic models for predicting gene essentiality.

机构信息

Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.

School of Biological Sciences, University of Edinburgh, Edinburgh, UK.

出版信息

NPJ Syst Biol Appl. 2024 Mar 6;10(1):24. doi: 10.1038/s41540-024-00348-2.

Abstract

Genome-scale metabolic models are powerful tools for understanding cellular physiology. Flux balance analysis (FBA), in particular, is an optimization-based approach widely employed for predicting metabolic phenotypes. In model microbes such as Escherichia coli, FBA has been successful at predicting essential genes, i.e. those genes that impair survival when deleted. A central assumption in this approach is that both wild type and deletion strains optimize the same fitness objective. Although the optimality assumption may hold for the wild type metabolic network, deletion strains are not subject to the same evolutionary pressures and knock-out mutants may steer their metabolism to meet other objectives for survival. Here, we present FlowGAT, a hybrid FBA-machine learning strategy for predicting essentiality directly from wild type metabolic phenotypes. The approach is based on graph-structured representation of metabolic fluxes predicted by FBA, where nodes correspond to enzymatic reactions and edges quantify the propagation of metabolite mass flow between a reaction and its neighbours. We integrate this information into a graph neural network that can be trained on knock-out fitness assay data. Comparisons across different model architectures reveal that FlowGAT predictions for E. coli are close to those of FBA for several growth conditions. This suggests that essentiality of enzymatic genes can be predicted by exploiting the inherent network structure of metabolism. Our approach demonstrates the benefits of combining the mechanistic insights afforded by genome-scale models with the ability of deep learning to infer patterns from complex datasets.

摘要

基因组规模的代谢模型是理解细胞生理学的有力工具。通量平衡分析(FBA),特别是一种基于优化的方法,被广泛用于预测代谢表型。在大肠杆菌等模式微生物中,FBA 成功地预测了必需基因,即删除这些基因会导致生存能力受损的基因。这种方法的一个核心假设是,野生型和缺失菌株都优化了相同的适应度目标。尽管这种最优假设可能适用于野生型代谢网络,但缺失菌株不受相同的进化压力影响,敲除突变体可能会引导其代谢以满足其他生存目标。在这里,我们提出了 FlowGAT,这是一种直接从野生型代谢表型预测必需性的 FBA-机器学习混合策略。该方法基于 FBA 预测的代谢通量的图结构表示,其中节点对应于酶反应,边量化代谢物质量流在反应与其邻居之间的传播。我们将此信息集成到图神经网络中,该网络可以在敲除适应度测定数据上进行训练。不同模型结构的比较表明,FlowGAT 对大肠杆菌的预测与几种生长条件下的 FBA 预测非常接近。这表明可以通过利用代谢的固有网络结构来预测酶基因的必需性。我们的方法展示了将基因组规模模型提供的机制洞察力与深度学习从复杂数据集推断模式的能力相结合的好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d6c/10917767/6636180c87d0/41540_2024_348_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验