Suppr超能文献

纵向数据与竞争风险数据的联合建模

Joint modelling of longitudinal and competing risks data.

作者信息

Williamson P R, Kolamunnage-Dona R, Philipson P, Marson A G

机构信息

Centre for Medical Statistics and Health Evaluation, University of Liverpool, Shelley's Cottage, Brownlow Street, Liverpool L69 3GS, UK.

出版信息

Stat Med. 2008 Dec 30;27(30):6426-38. doi: 10.1002/sim.3451.

Abstract

Available methods for joint modelling of longitudinal and survival data typically have only one failure type for the time to event outcome. We extend the methodology to allow for competing risks data. We fit a cause-specific hazards sub-model to allow for competing risks, with a separate latent association between longitudinal measurements and each cause of failure.The method is applied to data from the SANAD trial of anti-epileptic drugs (AEDs), as a means of investigating the effect of drug titration on the relative effects of lamotrigine (LTG) and carbamazepine (CBZ) on treatment failure. Concern had been expressed that differential titration rates may have been to the disadvantage of CBZ. The beneficial effect of LTG on unacceptable adverse events leading to drug withdrawal did not lessen and indeed increased slightly when a calibrated dose was accounted for in the joint model. Adjustment for the titration rate of LTG relative to CBZ resulted in an unchanged effect of the former on drug withdrawals due to inadequate seizure control. LTG remains the AED of choice from this analysis.

摘要

纵向数据和生存数据联合建模的现有方法通常对于事件发生时间结局只有一种失败类型。我们扩展了该方法以允许处理竞争风险数据。我们拟合了一个特定原因风险子模型以处理竞争风险,纵向测量与每种失败原因之间存在单独的潜在关联。该方法应用于抗癫痫药物(AEDs)的SANAD试验数据,作为研究药物滴定对拉莫三嗪(LTG)和卡马西平(CBZ)治疗失败相对效果影响的一种手段。有人担心不同的滴定率可能对CBZ不利。当在联合模型中考虑校准剂量时,LTG对导致停药的不可接受不良事件的有益作用并未减弱,实际上还略有增加。相对于CBZ对LTG滴定率进行调整后,前者对因癫痫发作控制不足导致停药的效果没有变化。从该分析来看,LTG仍然是首选的AED。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验