Suppr超能文献

由SH2、SH3和丝氨酸/苏氨酸激酶结构域识别的短线性基序在无序蛋白质区域中是保守的。

Short Linear Motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions.

作者信息

Ren Siyuan, Uversky Vladimir N, Chen Zhengjun, Dunker A Keith, Obradovic Zoran

机构信息

Center for Information Science and Technology, Temple University, Philadelphia, PA 19122, USA.

出版信息

BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S26. doi: 10.1186/1471-2164-9-S2-S26.

Abstract

BACKGROUND

Protein interactions are essential for most cellular functions. Interactions mediated by domains that appear in a large number of proteins are of particular interest since they are expected to have an impact on diversities of cellular processes such as signal transduction and immune response. Many well represented domains recognize and bind to primary sequences less than 10 amino acids in length called Short Linear Motifs (SLiMs).

RESULTS

In this study, we systematically studied the evolutionary conservation of SLiMs recognized by SH2, SH3 and Ser/Thr Kinase domains in both ordered and disordered protein regions. Disordered protein regions are protein sequences that lack a fixed three-dimensional structure under putatively native conditions. We find that, in all these domains examined, SLiMs are more conserved in disordered regions. This trend is more evident in those protein functional groups that are frequently reported to interact with specific domains.

CONCLUSION

The correlation between SLiM conservation with disorder prediction demonstrates that functional SLiMs recognized by each domain occur more often in disordered as compared to structured regions of proteins.

摘要

背景

蛋白质相互作用对大多数细胞功能至关重要。由大量蛋白质中出现的结构域介导的相互作用尤其令人感兴趣,因为它们预计会对细胞过程的多样性产生影响,如信号转导和免疫反应。许多代表性良好的结构域识别并结合长度小于10个氨基酸的一级序列,称为短线性基序(SLiMs)。

结果

在本研究中,我们系统地研究了SH2、SH3和丝氨酸/苏氨酸激酶结构域在有序和无序蛋白质区域中识别的SLiMs的进化保守性。无序蛋白质区域是指在假定的天然条件下缺乏固定三维结构的蛋白质序列。我们发现,在所有这些研究的结构域中,SLiMs在无序区域中更保守。这种趋势在那些经常被报道与特定结构域相互作用的蛋白质功能组中更为明显。

结论

SLiM保守性与无序预测之间的相关性表明,与蛋白质的结构化区域相比,每个结构域识别的功能性SLiMs在无序区域中出现的频率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac53/2559891/59d024e25fe1/1471-2164-9-S2-S26-1.jpg

相似文献

1
Short Linear Motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S26. doi: 10.1186/1471-2164-9-S2-S26.
3
Bioinformatics Approaches for Predicting Disordered Protein Motifs.
Adv Exp Med Biol. 2015;870:291-318. doi: 10.1007/978-3-319-20164-1_9.
4
Computational prediction of short linear motifs from protein sequences.
Methods Mol Biol. 2015;1268:89-141. doi: 10.1007/978-1-4939-2285-7_6.
5
Attributes of short linear motifs.
Mol Biosyst. 2012 Jan;8(1):268-81. doi: 10.1039/c1mb05231d. Epub 2011 Sep 12.
6
Interactome-wide prediction of short, disordered protein interaction motifs in humans.
Mol Biosyst. 2012 Jan;8(1):282-95. doi: 10.1039/c1mb05212h. Epub 2011 Aug 30.
7
D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data.
J Proteome Res. 2011 Dec 2;10(12):5285-95. doi: 10.1021/pr200312e. Epub 2011 Nov 1.
8
Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain.
PLoS Comput Biol. 2006 Jan;2(1):e1. doi: 10.1371/journal.pcbi.0020001. Epub 2006 Jan 27.
9
Intrinsically disordered domains: Sequence ➔ disorder ➔ function relationships.
Protein Sci. 2019 Sep;28(9):1652-1663. doi: 10.1002/pro.3680. Epub 2019 Aug 9.
10
Discovering short linear protein motif based on selective training of profile hidden Markov models.
J Theor Biol. 2015 Jul 21;377:75-84. doi: 10.1016/j.jtbi.2015.03.010. Epub 2015 Mar 17.

引用本文的文献

2
Computational Methods to Predict Intrinsically Disordered Regions and Functional Regions in Them.
Methods Mol Biol. 2023;2627:231-245. doi: 10.1007/978-1-0716-2974-1_13.
4
SH2 Domains: Folding, Binding and Therapeutical Approaches.
Int J Mol Sci. 2022 Dec 15;23(24):15944. doi: 10.3390/ijms232415944.
6
Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2.
Toxins (Basel). 2021 Apr 20;13(4):290. doi: 10.3390/toxins13040290.
7
A quantitative calcium phosphate nanocluster model of the casein micelle: the average size, size distribution and surface properties.
Eur Biophys J. 2021 Sep;50(6):847-866. doi: 10.1007/s00249-021-01533-5. Epub 2021 Apr 18.
9
NeProc predicts binding segments in intrinsically disordered regions without learning binding region sequences.
Biophys Physicobiol. 2020 Nov 3;17:147-154. doi: 10.2142/biophysico.BSJ-2020026. eCollection 2020.
10
Learning peptide recognition rules for a low-specificity protein.
Protein Sci. 2020 Nov;29(11):2259-2273. doi: 10.1002/pro.3958. Epub 2020 Oct 5.

本文引用的文献

1
TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic disorder.
Protein Pept Lett. 2008;15(9):956-63. doi: 10.2174/092986608785849164.
2
Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners.
BMC Genomics. 2008;9 Suppl 1(Suppl 1):S1. doi: 10.1186/1471-2164-9-S1-S1.
3
Signal transduction via unstructured protein conduits.
Nat Chem Biol. 2008 Apr;4(4):229-30. doi: 10.1038/nchembio0408-229.
4
Mining alpha-helix-forming molecular recognition features with cross species sequence alignments.
Biochemistry. 2007 Nov 27;46(47):13468-77. doi: 10.1021/bi7012273. Epub 2007 Nov 1.
6
Characterization of molecular recognition features, MoRFs, and their binding partners.
J Proteome Res. 2007 Jun;6(6):2351-66. doi: 10.1021/pr0701411. Epub 2007 May 9.
7
Local structural disorder imparts plasticity on linear motifs.
Bioinformatics. 2007 Apr 15;23(8):950-6. doi: 10.1093/bioinformatics/btm035. Epub 2007 Mar 25.
8
Analysis of molecular recognition features (MoRFs).
J Mol Biol. 2006 Oct 6;362(5):1043-59. doi: 10.1016/j.jmb.2006.07.087. Epub 2006 Aug 4.
10
PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory.
BMC Bioinformatics. 2006 Mar 20;7:163. doi: 10.1186/1471-2105-7-163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验