Suppr超能文献

基于交错视锥细胞镶嵌图的三色重建:贝叶斯模型与小光斑的颜色外观

Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots.

作者信息

Brainard David H, Williams David R, Hofer Heidi

机构信息

Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

J Vis. 2008 May 29;8(5):15.1-23. doi: 10.1167/8.5.15.

Abstract

Observers use a wide range of color names, including white, to describe monochromatic flashes with a retinal size comparable to that of a single cone. We model such data as a consequence of information loss arising from trichromatic sampling. The model starts with the simulated responses of the individual L, M, and S cones actually present in the cone mosaic and uses these to reconstruct the L-, M-, and S-cone signals that were present at every image location. We incorporate the optics and the mosaic topography of individual observers, as well as the spatio-chromatic statistics of natural images. We simulated the experiment of H. Hofer, B. Singer, & D. R. Williams (2005) and predicted the color name on each simulated trial from the average chromaticity of the spot reconstructed by our model. Broad features of the data across observers emerged naturally as a consequence of the measured individual variation in the relative numbers of L, M, and S cones. The model's output is also consistent with the appearance of larger spots and of sinusoidal contrast modulations. Finally, the model makes testable predictions for future experiments that study how color naming varies with the fine structure of the retinal mosaic.

摘要

观察者使用包括白色在内的多种颜色名称来描述视网膜大小与单个视锥细胞相当的单色闪光。我们将此类数据建模为三色采样导致的信息损失的结果。该模型从视锥细胞镶嵌中实际存在的单个L、M和S视锥细胞的模拟响应开始,并使用这些响应来重建每个图像位置处存在的L、M和S视锥细胞信号。我们纳入了个体观察者的光学和镶嵌地形,以及自然图像的空间色度统计。我们模拟了H. Hofer、B. Singer和D. R. Williams(2005年)的实验,并根据我们模型重建的斑点的平均色度预测每个模拟试验中的颜色名称。由于测量到的L、M和S视锥细胞相对数量的个体差异,不同观察者数据的广泛特征自然出现。该模型的输出也与较大斑点和正弦对比度调制的外观一致。最后,该模型对未来研究颜色命名如何随视网膜镶嵌的精细结构变化的实验做出了可检验的预测。

相似文献

2
Associating color appearance with the cone chromaticity space.
Vision Res. 2005 Jul;45(15):1929-34. doi: 10.1016/j.visres.2005.01.033.
3
Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina.
J Neurosci. 2017 Sep 27;37(39):9498-9509. doi: 10.1523/JNEUROSCI.0529-17.2017. Epub 2017 Sep 4.
5
Spatially coherent colour image reconstruction from a trichromatic mosaic with random arrangement of chromatic samples.
Ophthalmic Physiol Opt. 2010 Sep;30(5):492-502. doi: 10.1111/j.1475-1313.2010.00771.x.
6
Chromatic induction from S-cone patterns.
Vision Res. 2004 Apr;44(9):849-56. doi: 10.1016/j.visres.2003.11.004.
8
Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina.
J Neurosci. 2018 Feb 7;38(6):1520-1540. doi: 10.1523/JNEUROSCI.1688-17.2017. Epub 2018 Jan 5.
10
The perception of speed based on L-M and S-(L+M) cone opponent processing.
Vision Res. 2009 Mar;49(8):870-6. doi: 10.1016/j.visres.2009.03.004. Epub 2009 Mar 11.

引用本文的文献

1
Unique yellow shifts for small and brief stimuli in the central retina.
J Vis. 2024 Jun 3;24(6):2. doi: 10.1167/jov.24.6.2.
2
It's not easy seeing green: The veridical perception of small spots.
J Vis. 2023 May 2;23(5):2. doi: 10.1167/jov.23.5.2.
3
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
4
An image reconstruction framework for characterizing initial visual encoding.
Elife. 2022 Jan 17;11:e71132. doi: 10.7554/eLife.71132.
5
Color, Pattern, and the Retinal Cone Mosaic.
Curr Opin Behav Sci. 2019 Dec;30:41-47. doi: 10.1016/j.cobeha.2019.05.005. Epub 2019 Jul 5.
7
Spatial summation of individual cones in human color vision.
PLoS One. 2019 Jul 25;14(7):e0211397. doi: 10.1371/journal.pone.0211397. eCollection 2019.
8
Probing Computation in the Primate Visual System at Single-Cone Resolution.
Annu Rev Neurosci. 2019 Jul 8;42:169-186. doi: 10.1146/annurev-neuro-070918-050233. Epub 2019 Mar 11.
9
The spectral identity of foveal cones is preserved in hue perception.
J Vis. 2018 Oct 1;18(11):19. doi: 10.1167/18.11.19.
10
Sensations from a single M-cone depend on the activity of surrounding S-cones.
Sci Rep. 2018 Jun 4;8(1):8561. doi: 10.1038/s41598-018-26754-1.

本文引用的文献

1
Colour receptors of the human fovea.
Nature. 1946 Jul 20;158(4003):97. doi: 10.1038/158097c0.
2
Color and spatial structure in natural scenes.
Appl Opt. 1987 Jan 1;26(1):157-70. doi: 10.1364/AO.26.000157.
3
The relation between color discrimination and color constancy: when is optimal adaptation task dependent?
Neural Comput. 2007 Oct;19(10):2610-37. doi: 10.1162/neco.2007.19.10.2610.
6
Bayesian model of human color constancy.
J Vis. 2006 Nov 6;6(11):1267-81. doi: 10.1167/6.11.10.
7
Organization of the human trichromatic cone mosaic.
J Neurosci. 2005 Oct 19;25(42):9669-79. doi: 10.1523/JNEUROSCI.2414-05.2005.
8
Different sensations from cones with the same photopigment.
J Vis. 2005 May 19;5(5):444-54. doi: 10.1167/5.5.5.
9
Independent components of color natural scenes resemble V1 neurons in their spatial and color tuning.
J Neurophysiol. 2004 Jun;91(6):2859-73. doi: 10.1152/jn.00775.2003. Epub 2004 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验