Rogers Tim, Castillo Isaac Pérez, Kühn Reimer, Takeda Koujin
Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031116. doi: 10.1103/PhysRevE.78.031116. Epub 2008 Sep 10.
The spectral density of various ensembles of sparse symmetric random matrices is analyzed using the cavity method. We consider two cases: matrices whose associated graphs are locally treelike, and sparse covariance matrices. We derive a closed set of equations from which the density of eigenvalues can be efficiently calculated. Within this approach, the Wigner semicircle law for Gaussian matrices and the Marcenko-Pastur law for covariance matrices are recovered easily. Our results are compared with numerical diagonalization, showing excellent agreement.
使用腔方法分析了稀疏对称随机矩阵的各种集合的谱密度。我们考虑两种情况:其关联图局部呈树状的矩阵和稀疏协方差矩阵。我们推导了一组封闭的方程,从中可以有效地计算特征值的密度。在这种方法中,高斯矩阵的维格纳半圆律和协方差矩阵的马尔琴科 - 帕斯图尔律很容易得到恢复。我们将结果与数值对角化进行了比较,显示出极好的一致性。