Cook R K, Sheff D R, Rubenstein P A
Department of Biochemistry, University of Iowa College of Medicine, Iowa City 52242.
J Biol Chem. 1991 Sep 5;266(25):16825-33.
In this paper we have examined the post-translational modifications of the NH2 terminus of actin from the yeast Saccharomyces cerevisiae. Like actins examined previously, this actin contains an acetylated NH2 terminus. Actins in other organisms undergo a unique post-translational processing event in which the initial amino acid(s) are removed by an actin-specific processing enzyme in an acetylation-dependent reaction. This is defined as actin processing. In yeast, actin retains its initiator Met in vivo and is thus not processed even though a rat liver actin processing enzyme can process yeast actin in vitro. This lack of actin processing appears to be a general property of fungi, as the actin from three other species, Aspergillus nidulans, Schizosaccharomyces pombe, and Candida albicans are not NH2 terminally processed either. Yeast actin is a class I actin; its initiator Met directly precedes an acidic residue. We converted yeast actin to a class II species by inserting a Cys codon between the Met-1 and Asp-2 codons. In normal class II actins the Cys residue is removed as acetyl-Cys during processing. Neither the mutant actin nor chick beta-actin (a class I actin) are processed when expressed in yeast. S. cerevisiae thus appears to be also incapable of processing exogenous actins. Further study of the mutant actin containing a Cys at position 2 shows that 30-40% of this actin is stably unacetylated. This unacetylated actin does not have a shorter half-life than the acetylated form. From these studies we conclude that 1) NH2-terminal actin-specific processing is not required for actin function in yeast and three other fungi, 2) yeast are apparently incapable of processing any type of actin precursor, and 3) the stability of a yeast pseudo-class II actin is not affected by the acetylation state of the NH2 terminus.