Suppr超能文献

酵母液泡金属转运蛋白ZRC1和COT1中的单个氨基酸变化改变了它们的底物特异性。

A single amino acid change in the yeast vacuolar metal transporters ZRC1 and COT1 alters their substrate specificity.

作者信息

Lin Huilan, Kumánovics Attila, Nelson Jenifer M, Warner David E, Ward Diane McVey, Kaplan Jerry

机构信息

Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA.

出版信息

J Biol Chem. 2008 Dec 5;283(49):33865-73. doi: 10.1074/jbc.M804377200. Epub 2008 Oct 16.

Abstract

Iron is an essential nutrient but in excess may damage cells by generating reactive oxygen species due to Fenton reaction or by substituting for other transition metals in essential proteins. The budding yeast Saccharomyces cerevisiae detoxifies cytosolic iron by storage in the vacuole. Deletion of CCC1, which encodes the vacuolar iron importer, results in high iron sensitivity due to increased cytosolic iron. We selected mutants that permitted Deltaccc1 cells to grow under high iron conditions by UV mutagenesis. We identified a mutation (N44I) in the vacuolar zinc transporter ZRC1 that changed the substrate specificity of the transporter from zinc to iron. COT1, a vacuolar zinc and cobalt transporter, is a homologue of ZRC1 and both are members of the cation diffusion facilitator family. Mutation of the homologous amino acid (N45I) in COT1 results in an increased ability to transport iron and decreased ability to transport cobalt. These mutations are within the second hydrophobic domain of the transporters and show the essential nature of this domain in the specificity of metal transport.

摘要

铁是一种必需营养素,但过量时可能因芬顿反应产生活性氧或在必需蛋白质中替代其他过渡金属而损害细胞。出芽酵母酿酒酵母通过将铁储存在液泡中来解毒胞质铁。编码液泡铁导入蛋白的CCC1缺失会导致由于胞质铁增加而对高铁敏感。我们通过紫外线诱变筛选出了能使Δccc1细胞在高铁条件下生长的突变体。我们在液泡锌转运蛋白ZRC1中鉴定出一个突变(N44I),该突变将转运蛋白的底物特异性从锌改变为铁。COT1是一种液泡锌和钴转运蛋白,是ZRC1的同源物,二者均为阳离子扩散促进剂家族成员。COT1中同源氨基酸(N45I)的突变导致其运输铁的能力增强,运输钴的能力下降。这些突变位于转运蛋白的第二个疏水结构域内,表明该结构域在金属运输特异性方面的重要性质。

相似文献

1
A single amino acid change in the yeast vacuolar metal transporters ZRC1 and COT1 alters their substrate specificity.
J Biol Chem. 2008 Dec 5;283(49):33865-73. doi: 10.1074/jbc.M804377200. Epub 2008 Oct 16.
3
Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
J Biol Chem. 2002 Oct 18;277(42):39187-94. doi: 10.1074/jbc.M205052200. Epub 2002 Aug 2.
4
Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock.
J Biol Chem. 2003 Apr 25;278(17):15065-72. doi: 10.1074/jbc.M300568200. Epub 2003 Jan 28.
6
CCC1 is a transporter that mediates vacuolar iron storage in yeast.
J Biol Chem. 2001 Aug 3;276(31):29515-9. doi: 10.1074/jbc.M103944200. Epub 2001 Jun 4.
7
Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1.
Curr Genet. 2018 Apr;64(2):413-416. doi: 10.1007/s00294-017-0767-7. Epub 2017 Oct 17.
8
A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism.
J Biol Chem. 2004 Aug 6;279(32):33653-61. doi: 10.1074/jbc.M403146200. Epub 2004 May 25.
9
Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.
Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9995-10000. doi: 10.1073/pnas.171039798. Epub 2001 Jul 31.

引用本文的文献

3
Zinc homeostasis in Schizosaccharomyces pombe.
Arch Microbiol. 2023 Mar 21;205(4):126. doi: 10.1007/s00203-023-03473-4.
4
Fungal Zinc Homeostasis and Its Potential as an Antifungal Target: A Focus on the Human Pathogen .
Microorganisms. 2022 Dec 14;10(12):2469. doi: 10.3390/microorganisms10122469.
5
Zinc toxicity response in and identification of , a novel zinc transporter.
Front Plant Sci. 2022 Sep 6;13:976311. doi: 10.3389/fpls.2022.976311. eCollection 2022.
7
Genetic Disorders of Manganese Metabolism.
Curr Neurol Neurosci Rep. 2019 May 14;19(6):33. doi: 10.1007/s11910-019-0942-y.

本文引用的文献

1
Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast.
Mol Cell Biol. 2008 Feb;28(4):1326-37. doi: 10.1128/MCB.01219-07. Epub 2007 Dec 10.
2
Structure of the zinc transporter YiiP.
Science. 2007 Sep 21;317(5845):1746-8. doi: 10.1126/science.1143748. Epub 2007 Aug 23.
3
Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution.
Eukaryot Cell. 2007 Jul;6(7):1166-77. doi: 10.1128/EC.00077-07. Epub 2007 May 25.
5
Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1.
Science. 2006 Nov 24;314(5803):1295-8. doi: 10.1126/science.1132563. Epub 2006 Nov 2.
7
FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress.
Arch Microbiol. 2005 Jan;183(1):9-18. doi: 10.1007/s00203-004-0739-4. Epub 2004 Nov 11.
8
Oligomeric state of the Escherichia coli metal transporter YiiP.
J Biol Chem. 2004 Sep 17;279(38):39251-9. doi: 10.1074/jbc.M407044200. Epub 2004 Jul 16.
9
A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism.
J Biol Chem. 2004 Aug 6;279(32):33653-61. doi: 10.1074/jbc.M403146200. Epub 2004 May 25.
10
Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast.
J Biol Chem. 2003 Nov 14;278(46):45499-506. doi: 10.1074/jbc.M307229200. Epub 2003 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验