Suppr超能文献

赤霉素信号传导

Gibberellin signaling.

作者信息

Hartweck Lynn M

机构信息

Department of Plant Biology, 250 Biological Sciences Center, 1445 Gortner Ave, St Paul, MN 55108, USA.

出版信息

Planta. 2008 Dec;229(1):1-13. doi: 10.1007/s00425-008-0830-1. Epub 2008 Oct 21.

Abstract

This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.

摘要

本综述涵盖了赤霉素(GA)信号传导的最新进展。目前已知GA信号传导依赖于DELLA蛋白。DELLA蛋白通过激活包括Xerico在内的多个基因的启动子来负向调节GA反应,Xerico上调与GA拮抗的脱落酸途径。DELLA蛋白还促进GA受体赤霉素不敏感矮化1(GID1)的转录,并间接调节GA生物合成基因,增强GA反应性和反馈控制。对GID1的结构分析为理解GA信号传导提供了一个模型。GA结合在GID1的一个口袋内,改变GID1的构象并增加GID1对DELLA蛋白的亲和力。GA/GID1/DELLA对F-Box蛋白的亲和力增加,随后DELLA蛋白通过蛋白酶体降解。因此,GA通过DELLA蛋白的降解诱导生长。DELLA蛋白与三种光敏色素相互作用因子(PIF)蛋白的结合整合了光和GA信号通路。这种结合阻止了PIF3、4和5在黑暗中作为生长的正向转录调节因子发挥作用。由于PIF在光下会降解,这些PIF只能在无光且有GA的情况下发挥作用。新的分析表明,GA信号传导在植物维管系统出现的同时或之后、植物获得种子繁殖能力之前就已经进化。对从藓类植物中克隆的序列分析表明,GID1和DELLA蛋白是最早进化的,但最初并不相互作用。最近分化的卷柏具有GA生物合成和信号传导所需的所有基因,但GA反应在卷柏生理学中的作用仍是一个谜。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验