Suppr超能文献

赤霉素和生长素信号基因 RGA1 和 ARF8 抑制二倍体草莓附属果实的起始。

Gibberellin and auxin signaling genes RGA1 and ARF8 repress accessory fruit initiation in diploid strawberry.

机构信息

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Plant Physiol. 2021 Apr 2;185(3):1059-1075. doi: 10.1093/plphys/kiaa087.

Abstract

Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein-protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.

摘要

与卵巢衍生的植物果实不同,草莓( Fragaria xananassa )是一种从花托(花托,花序梗顶端容纳花器官的部分)衍生而来的附属果实。虽然植物果实和附属果实的发育都是响应种子释放的生长素和赤霉素(GA)启动的,但附属果实发育的下游生长素和 GA 信号机制目前尚不清楚。我们在早期果实发育阶段对野生草莓( Fragariavesca )中的 GA 和生长素信号突变体进行了特征描述。虽然 FveRGA1 和 FveARF8 的突变都导致果实变大,但只有 FveRGA1 的突变导致单性结实果实的形成,这表明 FveRGA1 是果实形成的关键调节因子。FveRGA1 通过抑制细胞分裂和扩展基因的表达来介导受精诱导的 GA 信号,在附属果实启动过程中,FveRGA1 与 FveARF8 表现出直接的蛋白-蛋白相互作用。此外, fvearf8 突变体果实对生长素或 GA 处理的反应增强,对 GA 的增强反应是由于编码假定 GA 受体的 FveGID1c 的表达增加所致。该研究揭示了生长素信号中的 FveARF8 和 GA 信号中的 FveGID1c 之间的串扰机制。总之,我们的工作为附属果实中的激素信号提供了功能见解,拓宽了我们对不同果实类型果实启动的理解,并为未来提高草莓果实生产力和品质奠定了基础。

相似文献

1
2
Gibberellin biosynthesis and signalling during development of the strawberry receptacle.
New Phytol. 2011 Jul;191(2):376-390. doi: 10.1111/j.1469-8137.2011.03700.x. Epub 2011 Mar 28.
3
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11542-E11550. doi: 10.1073/pnas.1812575115. Epub 2018 Nov 19.
6
Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca.
Plant Cell. 2013 Jun;25(6):1960-78. doi: 10.1105/tpc.113.111732. Epub 2013 Jun 28.
8
FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca.
Planta. 2018 Apr;247(4):941-951. doi: 10.1007/s00425-017-2839-9. Epub 2017 Dec 29.
10
Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening.
Planta. 2019 Jul;250(1):145-162. doi: 10.1007/s00425-019-03155-w. Epub 2019 Apr 4.

引用本文的文献

1
Auxin Gradients Determine Reproductive Development in Pea (Pisum sativum).
Physiol Plant. 2025 Sep-Oct;177(5):e70497. doi: 10.1111/ppl.70497.
4
Genome-Wide Identification and Characterization of the / Gene Family in Strawberry Species.
Plants (Basel). 2024 Oct 21;13(20):2940. doi: 10.3390/plants13202940.
5
Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening.
Hortic Res. 2024 Jul 31;11(10):uhae209. doi: 10.1093/hr/uhae209. eCollection 2024 Oct.
7
Advances in genomics and genome editing for improving strawberry ().
Front Genet. 2024 Apr 19;15:1382445. doi: 10.3389/fgene.2024.1382445. eCollection 2024.
8
The Role of FveAFB5 in Auxin-Mediated Responses and Growth in Strawberries.
Plants (Basel). 2024 Apr 19;13(8):1142. doi: 10.3390/plants13081142.
9
Parthenocarpy in : Advances for Economic and Environmental Sustainability.
Plants (Basel). 2023 Oct 2;12(19):3462. doi: 10.3390/plants12193462.
10
Transcriptome Analysis Reveals Candidate Genes Involved in Gibberellin-Induced Fruit Development in .
Plants (Basel). 2023 Sep 28;12(19):3425. doi: 10.3390/plants12193425.

本文引用的文献

1
Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana.
Mol Cell. 2019 Oct 3;76(1):177-190.e5. doi: 10.1016/j.molcel.2019.06.044. Epub 2019 Aug 14.
2
Updated annotation of the wild strawberry V4 genome.
Hortic Res. 2019 May 1;6:61. doi: 10.1038/s41438-019-0142-6. eCollection 2019.
3
CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry.
Plant Methods. 2019 May 2;15:45. doi: 10.1186/s13007-019-0428-6. eCollection 2019.
4
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry.
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11542-E11550. doi: 10.1073/pnas.1812575115. Epub 2018 Nov 19.
7
Opaque-2 Regulates a Complex Gene Network Associated with Cell Differentiation and Storage Functions of Maize Endosperm.
Plant Cell. 2018 Oct;30(10):2425-2446. doi: 10.1105/tpc.18.00392. Epub 2018 Sep 27.
9
Consensus Coexpression Network Analysis Identifies Key Regulators of Flower and Fruit Development in Wild Strawberry.
Plant Physiol. 2018 Sep;178(1):202-216. doi: 10.1104/pp.18.00086. Epub 2018 Jul 10.
10
Efficient genome editing of wild strawberry genes, vector development and validation.
Plant Biotechnol J. 2018 Nov;16(11):1868-1877. doi: 10.1111/pbi.12922. Epub 2018 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验