Suppr超能文献

网络模式揭示的物理相互作用组的组织

Organization of physical interactomes as uncovered by network schemas.

作者信息

Banks Eric, Nabieva Elena, Chazelle Bernard, Singh Mona

机构信息

Department of Computer Science & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.

出版信息

PLoS Comput Biol. 2008 Oct;4(10):e1000203. doi: 10.1371/journal.pcbi.1000203. Epub 2008 Oct 24.

Abstract

Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks.

摘要

大规模蛋白质-蛋白质相互作用网络为理解细胞组织和功能提供了新的契机。我们引入网络模式来阐明相互作用组中的共同机制。网络模式规定了蛋白质的描述以及它们之间相互作用的拓扑结构。我们开发了算法,用于系统地发现物理相互作用网络中反复出现且过度呈现的模式。我们将我们的方法应用于酿酒酵母相互作用组,重点关注由通过序列基序和分子功能注释描述的蛋白质组成,并以四种基本网络拓扑之一相互作用的模式。我们识别出数百种各种复杂程度的反复出现且过度呈现的网络模式,并通过图论表示展示了更复杂的模式是如何根据其低阶成分进行组织的。所发现的模式涵盖了广泛的细胞活动,有许多与信号传导和运输相关的高阶模式。我们通过表明它们对应于功能上连贯的蛋白质组、在人类相互作用组中具有实例的频率较高且可用于预测蛋白质功能,确立了这些模式的功能重要性。我们的发现表明,网络模式是组织、探究和注释细胞网络的有力范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e68/2561054/d2e501765f62/pcbi.1000203.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验