Department of Mathematics and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nat Rev Genet. 2013 May;14(5):333-46. doi: 10.1038/nrg3433.
High-throughput experimental technologies are generating increasingly massive and complex genomic data sets. The sheer enormity and heterogeneity of these data threaten to make the arising problems computationally infeasible. Fortunately, powerful algorithmic techniques lead to software that can answer important biomedical questions in practice. In this Review, we sample the algorithmic landscape, focusing on state-of-the-art techniques, the understanding of which will aid the bench biologist in analysing omics data. We spotlight specific examples that have facilitated and enriched analyses of sequence, transcriptomic and network data sets.
高通量实验技术正在产生越来越大且复杂的基因组数据集。这些数据的巨大规模和异质性使得出现的问题在计算上变得不可行。幸运的是,强大的算法技术产生了能够在实践中回答重要生物医学问题的软件。在这篇综述中,我们抽样分析了算法领域,重点介绍了最先进的技术,了解这些技术将有助于从事基础生物学研究的生物学家分析组学数据。我们特别介绍了一些有助于丰富序列、转录组和网络数据集分析的具体示例。