Suppr超能文献

用于识别细胞对药物毒性反应的系统生物学和功能基因组学方法。

Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity.

作者信息

Harrill Alison Hege, Rusyn Ivan

机构信息

University of North Carolina at Chapel Hill, 0031 Michael Hooker Research Center, Curriculum in Toxicology, CB 7431, Chapel Hill, NC, 27599, USA.

出版信息

Expert Opin Drug Metab Toxicol. 2008 Nov;4(11):1379-89. doi: 10.1517/17425255.4.11.1379.

Abstract

Extensive growth in the field of molecular biology in recent decades has led to the development of new and powerful experimental and computational tools that enable the analysis of complex biological responses to chemical exposure on both a functional and structural genetic level. The ability to profile global responses on a transcriptional level has become a valuable resource in the science of toxicology and attempts are now being made to further understand toxicity mechanisms by incorporating metabolomics and proteomics approaches. In addition, recent progress in understanding the extent of the genetic diversity within and between species allows us to take a fresh look at research on genetic polymorphisms that may influence an individual's susceptibility to toxicity. Whereas new technologies have the potential to make a sizeable impact on our understanding of the mechanisms of toxicity, considerable challenges remain to be addressed, especially with regard to the regulatory acceptance and successful integration of omics data. This review highlights recent advancements in the application of functional and structural genomics techniques to chemical hazard identification and characterization, and to the understanding of the interindividual differences in susceptibility to adverse drug reactions.

摘要

近几十年来,分子生物学领域的广泛发展催生了新的强大实验和计算工具,这些工具能够在功能和结构基因层面分析化学物质暴露引发的复杂生物反应。在转录水平上剖析全局反应的能力已成为毒理学领域的一项宝贵资源,目前人们正尝试通过整合代谢组学和蛋白质组学方法来进一步理解毒性机制。此外,在了解物种内部和物种之间遗传多样性程度方面取得的最新进展,使我们能够重新审视关于可能影响个体毒性易感性的基因多态性研究。尽管新技术有可能对我们理解毒性机制产生重大影响,但仍有诸多挑战有待解决,尤其是在组学数据的监管接受度和成功整合方面。本综述重点介绍了功能和结构基因组学技术在化学危害识别与表征以及理解个体间药物不良反应易感性差异方面的最新进展。

相似文献

5
Genomic and proteomic approaches for predicting toxicity and adverse drug reactions.
Expert Opin Drug Metab Toxicol. 2009 Jan;5(1):29-37. doi: 10.1517/17425250802661895.
8
Toxicogenomics in drug development.药物研发中的毒理基因组学。
Toxicol Pathol. 2003 Sep-Oct;31(5):471-9. doi: 10.1080/01926230390224656.

引用本文的文献

2
The evolving role of investigative toxicology in the pharmaceutical industry.在制药行业中,调查毒理学的作用不断演变。
Nat Rev Drug Discov. 2023 Apr;22(4):317-335. doi: 10.1038/s41573-022-00633-x. Epub 2023 Feb 13.
7
Animal-Free Chemical Safety Assessment.无动物化学安全性评估
Front Pharmacol. 2016 Jul 21;7:218. doi: 10.3389/fphar.2016.00218. eCollection 2016.
9
In vitro screening for population variability in chemical toxicity.体外筛选化学毒性的人群变异性。
Toxicol Sci. 2011 Feb;119(2):398-407. doi: 10.1093/toxsci/kfq322. Epub 2010 Oct 15.
10
Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity.体外毒遗传学小鼠模型用于肝毒性的评价。
Toxicol Appl Pharmacol. 2010 Dec 15;249(3):208-16. doi: 10.1016/j.taap.2010.09.012. Epub 2010 Sep 24.

本文引用的文献

2
Creating and evaluating genetic tests predictive of drug response.创建和评估预测药物反应的基因检测。
Nat Rev Drug Discov. 2008 Jul;7(7):568-74. doi: 10.1038/nrd2520. Epub 2008 Jun 20.
4
What does systems biology mean for drug development?系统生物学对药物研发意味着什么?
Curr Med Chem. 2008;15(15):1520-8. doi: 10.2174/092986708784638843.
8
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.大鼠肝切片的微阵列分析可正确预测体内肝毒性。
Toxicol Appl Pharmacol. 2008 Jun 15;229(3):300-9. doi: 10.1016/j.taap.2008.01.037. Epub 2008 Feb 15.
9
Validation of putative genomic biomarkers of nephrotoxicity in rats.大鼠肾毒性假定基因组生物标志物的验证
Toxicology. 2008 Apr 18;246(2-3):91-100. doi: 10.1016/j.tox.2007.12.031. Epub 2008 Jan 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验