Schwartz Daniel, Chou Michael F, Church George M
Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Mol Cell Proteomics. 2009 Feb;8(2):365-79. doi: 10.1074/mcp.M800332-MCP200. Epub 2008 Oct 28.
Protein post-translational modifications are an important biological regulatory mechanism, and the rate of their discovery using high throughput techniques is rapidly increasingly. To make use of this wealth of sequence data, we introduce a new general strategy designed to predict a variety of post-translational modifications in several organisms. We used the motif-x program to determine phosphorylation motifs in yeast, fly, mouse, and man and lysine acetylation motifs in man. These motifs were then scanned against proteomic sequence data using a newly developed tool called scan-x to globally predict other potential modification sites within these organisms. 10-fold cross-validation was used to determine the sensitivity and minimum specificity for each set of predictions, all of which showed improvement over other available tools for phosphoprediction. New motif discovery is a byproduct of this approach, and the phosphorylation motif analyses provide strong evidence of evolutionary conservation of both known and novel kinase motifs.
蛋白质翻译后修饰是一种重要的生物调节机制,利用高通量技术发现它们的速度正在迅速提高。为了利用这些丰富的序列数据,我们引入了一种新的通用策略,旨在预测多种生物体中的各种翻译后修饰。我们使用Motif-X程序来确定酵母、果蝇、小鼠和人类中的磷酸化基序以及人类中的赖氨酸乙酰化基序。然后使用一种名为Scan-X的新开发工具对这些基序进行蛋白质组序列数据扫描,以全局预测这些生物体内的其他潜在修饰位点。使用10倍交叉验证来确定每组预测的敏感性和最低特异性,所有这些预测都比其他可用的磷酸化预测工具有所改进。新基序发现是这种方法的一个副产品,磷酸化基序分析为已知和新型激酶基序的进化保守性提供了有力证据。