Suppr超能文献

相似文献

1
Structural insights into a circadian oscillator.
Science. 2008 Oct 31;322(5902):697-701. doi: 10.1126/science.1150451.
2
The cyanobacterial circadian system: from biophysics to bioevolution.
Annu Rev Biophys. 2011;40:143-67. doi: 10.1146/annurev-biophys-042910-155317.
4
The reversible function switching of the circadian clock protein KaiA is encoded in its structure.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2535-2542. doi: 10.1016/j.bbagen.2017.08.012. Epub 2017 Aug 24.
5
A cyanobacterial circadian clockwork.
Curr Biol. 2008 Sep 9;18(17):R816-R825. doi: 10.1016/j.cub.2008.07.012.
6
Ordered phosphorylation governs oscillation of a three-protein circadian clock.
Science. 2007 Nov 2;318(5851):809-12. doi: 10.1126/science.1148596. Epub 2007 Oct 4.
7
Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria.
Science. 2015 Jul 17;349(6245):324-8. doi: 10.1126/science.1260031. Epub 2015 Jun 25.
8
Autonomous synchronization of the circadian KaiC phosphorylation rhythm.
Nat Struct Mol Biol. 2007 Nov;14(11):1084-8. doi: 10.1038/nsmb1312. Epub 2007 Oct 28.
9
A cyanobacterial circadian clock based on the Kai oscillator.
Cold Spring Harb Symp Quant Biol. 2007;72:47-55. doi: 10.1101/sqb.2007.72.029.

引用本文的文献

1
Spectres of Clock Evolution: Past, Present, and Yet to Come.
Front Physiol. 2022 Feb 11;12:815847. doi: 10.3389/fphys.2021.815847. eCollection 2021.
2
Human circadian variations.
J Clin Invest. 2021 Aug 16;131(16). doi: 10.1172/JCI148282.
3
Positioning the Model Bacterial Organelle, the Carboxysome.
mBio. 2021 May 11;12(3):e02519-19. doi: 10.1128/mBio.02519-19.
4
Conceptual Evolution of Cell Signaling.
Int J Mol Sci. 2019 Jul 4;20(13):3292. doi: 10.3390/ijms20133292.
5
Circadian oscillator proteins across the kingdoms of life: structural aspects.
BMC Biol. 2019 Feb 18;17(1):13. doi: 10.1186/s12915-018-0623-3.
7
Adaptive Prediction Emerges Over Short Evolutionary Time Scales.
Genome Biol Evol. 2017 Jun 1;9(6):1616-1623. doi: 10.1093/gbe/evx116.
8
Architecture and mechanism of the central gear in an ancient molecular timer.
J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.1065.
9
Timing the day: what makes bacterial clocks tick?
Nat Rev Microbiol. 2017 Apr;15(4):232-242. doi: 10.1038/nrmicro.2016.196. Epub 2017 Feb 20.
10
Diffraction Techniques in Structural Biology.
Curr Protoc Nucleic Acid Chem. 2016 Jun 1;65:7.13.1-7.13.41. doi: 10.1002/cpnc.4.

本文引用的文献

1
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Genes Dev. 2008 Jun 1;22(11):1513-21. doi: 10.1101/gad.1661808. Epub 2008 May 13.
2
Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock.
Nature. 2007 Dec 20;450(7173):1249-52. doi: 10.1038/nature06395.
4
Circadian rhythms of superhelical status of DNA in cyanobacteria.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18819-24. doi: 10.1073/pnas.0706069104. Epub 2007 Nov 13.
5
Autonomous synchronization of the circadian KaiC phosphorylation rhythm.
Nat Struct Mol Biol. 2007 Nov;14(11):1084-8. doi: 10.1038/nsmb1312. Epub 2007 Oct 28.
6
Ordered phosphorylation governs oscillation of a three-protein circadian clock.
Science. 2007 Nov 2;318(5851):809-12. doi: 10.1126/science.1148596. Epub 2007 Oct 4.
7
ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16377-81. doi: 10.1073/pnas.0706292104. Epub 2007 Sep 27.
8
Winding up the cyanobacterial circadian clock.
Trends Microbiol. 2007 Sep;15(9):381-8. doi: 10.1016/j.tim.2007.08.005. Epub 2007 Sep 4.
9
A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria.
EMBO J. 2007 Sep 5;26(17):4029-37. doi: 10.1038/sj.emboj.7601832. Epub 2007 Aug 23.
10
Elucidating the ticking of an in vitro circadian clockwork.
PLoS Biol. 2007 Apr;5(4):e93. doi: 10.1371/journal.pbio.0050093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验