Johnson Carl Hirschie, Egli Martin, Stewart Phoebe L
Department of Biological Sciences, Box 35-1634, Vanderbilt University, Nashville, TN 37235-1634, USA.
Science. 2008 Oct 31;322(5902):697-701. doi: 10.1126/science.1150451.
An endogenous circadian system in cyanobacteria exerts pervasive control over cellular processes, including global gene expression. Indeed, the entire chromosome undergoes daily cycles of topological changes and compaction. The biochemical machinery underlying a circadian oscillator can be reconstituted in vitro with just three cyanobacterial proteins, KaiA, KaiB, and KaiC. These proteins interact to promote conformational changes and phosphorylation events that determine the phase of the in vitro oscillation. The high-resolution structures of these proteins suggest a ratcheting mechanism by which the KaiABC oscillator ticks unidirectionally. This posttranslational oscillator may interact with transcriptional and translational feedback loops to generate the emergent circadian behavior in vivo. The conjunction of structural, biophysical, and biochemical approaches to this system reveals molecular mechanisms of biological timekeeping.
蓝藻中的内源性昼夜节律系统对细胞过程,包括全局基因表达,施加广泛的控制。实际上,整个染色体经历拓扑变化和压缩的日常循环。昼夜节律振荡器的生化机制可以在体外仅用三种蓝藻蛋白KaiA、KaiB和KaiC重建。这些蛋白相互作用以促进构象变化和磷酸化事件,从而决定体外振荡的相位。这些蛋白的高分辨率结构表明了一种棘轮机制,通过该机制KaiABC振荡器单向运行。这种翻译后振荡器可能与转录和翻译反馈环相互作用,以在体内产生出现的昼夜节律行为。对该系统采用结构、生物物理和生化方法相结合揭示了生物计时的分子机制。