Hannestad Jonas K, Sandin Peter, Albinsson Bo
Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
J Am Chem Soc. 2008 Nov 26;130(47):15889-95. doi: 10.1021/ja803407t.
DNA is a promising material for use in nanotechnology; the persistence length of double stranded DNA gives it a rigid structure in the several-nanometer regime, and its four letter alphabet enables addressability. We present the construction of a self-assembled DNA-based photonic wire capable of transporting excitation energy over a distance of more than 20 nm. The wire utilizes DNA as a scaffold for a chromophore with overlapping absorption and emission bands enabling fluorescence resonance energy transfer (FRET) between pairs of chromophores leading to sequential transfer of the excitation energy along the wire. This allows for the creation of a self-assembled photonic wire using straightforward construction and, in addition, allows for a large span in wire lengths without changing the basic components. The intercalating chromophore, YO, is chosen for its homotransfer capability enabling effective diffusive energy migration along the wire without loss in energy. In contrast to heterotransfer, i.e., multistep cascade FRET, where each step renders a photon with less energy than in the previous step, homotransfer preserves the energy in each step. By using injector and detector chromophores at opposite ends of the wire, directionality of the wire is achieved. The efficiency of the wire constructs is examined by steady-state and time-resolved fluorescence measurements and the energy transfer process is simulated using a Markov chain model. We show that it is possible to create two component DNA-based photonic wires capable of long-range energy transfer using a straightforward self-assembly approach.
DNA是一种很有前景的用于纳米技术的材料;双链DNA的持久长度使其在几纳米的尺度上具有刚性结构,并且其四个字母的碱基序列实现了可寻址性。我们展示了一种基于DNA的自组装光子线的构建,该光子线能够在超过20纳米的距离上传输激发能量。这种光子线利用DNA作为发色团的支架,发色团具有重叠的吸收和发射带,使得荧光共振能量转移(FRET)能够在发色团对之间发生,从而导致激发能量沿着光子线顺序转移。这使得能够使用简单的构建方法创建自组装光子线,此外,在不改变基本组件的情况下,可以实现光子线长度的大幅度跨度。插入式发色团YO因其均相转移能力而被选用,这种能力使得激发能量能够沿着光子线进行有效的扩散迁移而不损失能量。与异相转移(即多步级联FRET,其中每一步产生的光子能量都比上一步少)不同,均相转移在每一步都能保留能量。通过在光子线的两端使用注入器和检测器发色团,实现了光子线的方向性。通过稳态和时间分辨荧光测量来检查光子线结构的效率,并使用马尔可夫链模型对能量转移过程进行模拟。我们表明,使用简单的自组装方法创建能够进行长程能量转移的双组分基于DNA的光子线是可能的。