Suppr超能文献

通过移动体模研究评估多部位神经成像的可靠性。

Assessment of reliability of multi-site neuroimaging via traveling phantom study.

作者信息

Gouttard Sylvain, Styner Martin, Prastawa Marcel, Piven Joseph, Gerig Guido

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Med Image Comput Comput Assist Interv. 2008;11(Pt 2):263-70. doi: 10.1007/978-3-540-85990-1_32.

Abstract

This paper describes a framework for quantitative analysis of neuroimaging data of traveling human phantoms used for cross-site validation. We focus on the analysis of magnetic resonance image data including intra- and inter-site comparison. Locations and magnitude of geometric deformation is studied via unbiased atlas building and metrics on deformation fields. Variability of tissue segmentation is analyzed by comparison of volumes, overlap of tissue maps, and a new Kullback-Leibler divergence on tissue probabilities, with emphasis on comparing probabilistic rather than binary segmentations. We show that results from this information theoretic measure are highly correlated with overlap. Reproducibility of automatic, atlas-based segmentation of subcortical structures is examined by comparison of volumes, shape overlap and surface distances. Variability among scanners of the same type but also differences to a different scanner type are discussed. The results demonstrate excellent reliability across multiple sites that can be achieved by the use of the today's scanner generation and powerful automatic analysis software. Knowledge about such variability is crucial for study design and power analysis in new multi-site clinical studies.

摘要

本文描述了一个用于对用于跨站点验证的移动人体模型的神经影像数据进行定量分析的框架。我们专注于磁共振图像数据的分析,包括站点内和站点间的比较。通过无偏图谱构建和变形场度量来研究几何变形的位置和大小。通过比较体积、组织图谱的重叠以及基于组织概率的新库尔贝克-莱布勒散度来分析组织分割的变异性,重点是比较概率性分割而非二元分割。我们表明,这种信息论度量的结果与重叠高度相关。通过比较体积、形状重叠和表面距离来检查基于图谱的皮质下结构自动分割的可重复性。讨论了同一类型扫描仪之间的变异性以及与不同扫描仪类型的差异。结果表明,使用当今一代扫描仪和强大的自动分析软件可以在多个站点实现出色的可靠性。了解这种变异性对于新的多站点临床研究的研究设计和功效分析至关重要。

相似文献

1
Assessment of reliability of multi-site neuroimaging via traveling phantom study.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):263-70. doi: 10.1007/978-3-540-85990-1_32.
2
Inter-site and inter-scanner diffusion MRI data harmonization.
Neuroimage. 2016 Jul 15;135:311-23. doi: 10.1016/j.neuroimage.2016.04.041. Epub 2016 Apr 30.
3
Power estimation for non-standardized multisite studies.
Neuroimage. 2016 Jul 1;134:281-294. doi: 10.1016/j.neuroimage.2016.03.051. Epub 2016 Apr 1.
4
Variability and bias assessment in breast ADC measurement across multiple systems.
J Magn Reson Imaging. 2016 Oct;44(4):846-55. doi: 10.1002/jmri.25237. Epub 2016 Mar 23.
5
Measurement of MRI scanner performance with the ADNI phantom.
Med Phys. 2009 Jun;36(6):2193-205. doi: 10.1118/1.3116776.
6
Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations.
Neuroimage. 2013 Dec;83:472-84. doi: 10.1016/j.neuroimage.2013.05.007. Epub 2013 May 11.
7
Multi-modal image set registration and atlas formation.
Med Image Anal. 2006 Jun;10(3):440-51. doi: 10.1016/j.media.2005.03.002.
8
Robust atlas-based brain segmentation using multi-structure confidence-weighted registration.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):549-57. doi: 10.1007/978-3-642-04271-3_67.
10
A volume resolution phantom for MRI.
Magn Reson Imaging. 2010 Feb;28(2):286-9. doi: 10.1016/j.mri.2009.07.002. Epub 2009 Aug 19.

引用本文的文献

1
Solving the Pervasive Problem of Protocol Non-Compliance in MRI using an Open-Source tool mrQA.
Neuroinformatics. 2024 Jul;22(3):297-315. doi: 10.1007/s12021-024-09668-4. Epub 2024 Jun 11.
2
White matter development and language abilities during infancy in autism spectrum disorder.
Mol Psychiatry. 2024 Jul;29(7):2095-2104. doi: 10.1038/s41380-024-02470-3. Epub 2024 Feb 21.
4
A Novel Method for High-Dimensional Anatomical Mapping of Extra-Axial Cerebrospinal Fluid: Application to the Infant Brain.
Front Neurosci. 2020 Oct 2;14:561556. doi: 10.3389/fnins.2020.561556. eCollection 2020.
5
Sex differences associated with corpus callosum development in human infants: A longitudinal multimodal imaging study.
Neuroimage. 2020 Jul 15;215:116821. doi: 10.1016/j.neuroimage.2020.116821. Epub 2020 Apr 7.
6
Standardized Brain MRI Acquisition Protocols Improve Statistical Power in Multicenter Quantitative Morphometry Studies.
J Neuroimaging. 2020 Jan;30(1):126-133. doi: 10.1111/jon.12673. Epub 2019 Oct 30.
7
The superior longitudinal fasciculus and its functional triple-network mechanisms in brooding.
Neuroimage Clin. 2019;24:101935. doi: 10.1016/j.nicl.2019.101935. Epub 2019 Jul 19.
8
Development of White Matter Circuitry in Infants With Fragile X Syndrome.
JAMA Psychiatry. 2018 May 1;75(5):505-513. doi: 10.1001/jamapsychiatry.2018.0180.
9
Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism.
Mol Autism. 2017 Mar 4;8:8. doi: 10.1186/s13229-017-0126-z. eCollection 2017.
10
Longitudinal modeling of appearance and shape and its potential for clinical use.
Med Image Anal. 2016 Oct;33:114-121. doi: 10.1016/j.media.2016.06.014. Epub 2016 Jun 15.

本文引用的文献

1
Deformable templates using large deformation kinematics.
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
2
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
3
A hierarchical algorithm for MR brain image parcellation.
IEEE Trans Med Imaging. 2007 Sep;26(9):1201-12. doi: 10.1109/TMI.2007.901433.
4
Atlas renormalization for improved brain MR image segmentation across scanner platforms.
IEEE Trans Med Imaging. 2007 Apr;26(4):479-86. doi: 10.1109/TMI.2007.893282.
5
Unbiased diffeomorphic atlas construction for computational anatomy.
Neuroimage. 2004;23 Suppl 1:S151-60. doi: 10.1016/j.neuroimage.2004.07.068.
6
A fully automatic and robust brain MRI tissue classification method.
Med Image Anal. 2003 Dec;7(4):513-27. doi: 10.1016/s1361-8415(03)00037-9.
7
HAMMER: hierarchical attribute matching mechanism for elastic registration.
IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39. doi: 10.1109/TMI.2002.803111.
8
Automated model-based tissue classification of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):897-908. doi: 10.1109/42.811270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验