Lorenzen Peter, Prastawa Marcel, Davis Brad, Gerig Guido, Bullitt Elizabeth, Joshi Sarang
Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA.
Med Image Anal. 2006 Jun;10(3):440-51. doi: 10.1016/j.media.2005.03.002.
In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the different modalities. This modality independent registration framework is achieved by jointly estimating the posterior probabilities associated with the multi-modal image sets and the high-dimensional registration transformations mapping these posteriors. To maximally use the information present in all the modalities for registration, Kullback-Leibler divergence between the estimated posteriors is minimized. Registration results for image sets composed of multi-modal MR images of healthy adult human brains are presented. Atlas formation results are presented for a population of five infant human brains.
在本文中,我们提出了一个贝叶斯框架,用于生成两个大脑多模态图像集之间的个体间大变形变换以及构建多类大脑图谱。在此框架中,利用每个不同模态中存在的关于潜在神经解剖结构的最大信息来生成估计变换。通过联合估计与多模态图像集相关的后验概率以及映射这些后验概率的高维配准变换,实现了这种与模态无关的配准框架。为了在配准中最大程度地利用所有模态中存在的信息,使估计后验之间的库尔贝克 - 莱布勒散度最小化。给出了由健康成人大脑的多模态磁共振图像组成的图像集的配准结果。给出了五个人类婴儿大脑群体的图谱构建结果。