Suppr超能文献

相似文献

1
A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):1083-91. doi: 10.1007/978-3-540-85990-1_130.
2
Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.
Magn Reson Imaging. 2014 Sep;32(7):941-55. doi: 10.1016/j.mri.2014.05.003. Epub 2014 May 13.
3
An improved level set method for brain MR images segmentation and bias correction.
Comput Med Imaging Graph. 2009 Oct;33(7):510-9. doi: 10.1016/j.compmedimag.2009.04.009. Epub 2009 May 28.
4
Adaptive segmentation of magnetic resonance images with intensity inhomogeneity using level set method.
Magn Reson Imaging. 2013 May;31(4):567-74. doi: 10.1016/j.mri.2012.10.010. Epub 2013 Jan 3.
5
An improved variational level set method for MR image segmentation and bias field correction.
Magn Reson Imaging. 2013 Apr;31(3):439-47. doi: 10.1016/j.mri.2012.08.002. Epub 2012 Dec 7.
6
An efficient level set method for simultaneous intensity inhomogeneity correction and segmentation of MR images.
Comput Med Imaging Graph. 2016 Mar;48:9-20. doi: 10.1016/j.compmedimag.2015.11.005. Epub 2015 Dec 14.
7
Minimization of region-scalable fitting energy for image segmentation.
IEEE Trans Image Process. 2008 Oct;17(10):1940-9. doi: 10.1109/TIP.2008.2002304.
8
Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation.
Magn Reson Imaging. 2014 Sep;32(7):913-23. doi: 10.1016/j.mri.2014.03.010. Epub 2014 Apr 30.
9
A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.
Comput Math Methods Med. 2017;2017:9174275. doi: 10.1155/2017/9174275. Epub 2017 Nov 27.
10
An anisotropic images segmentation and bias correction method.
Magn Reson Imaging. 2012 Jan;30(1):85-95. doi: 10.1016/j.mri.2011.09.003. Epub 2011 Nov 4.

引用本文的文献

1
A cascaded nested network for 3T brain MR image segmentation guided by 7T labeling.
Pattern Recognit. 2022 Apr;124. doi: 10.1016/j.patcog.2021.108420. Epub 2021 Nov 6.
2
Selective image segmentation driven by region, edge and saliency functions.
PLoS One. 2023 Dec 15;18(12):e0294789. doi: 10.1371/journal.pone.0294789. eCollection 2023.
4
SRIS: Saliency-Based Region Detection and Image Segmentation of COVID-19 Infected Cases.
IEEE Access. 2020 Oct 19;8:190487-190503. doi: 10.1109/ACCESS.2020.3032288. eCollection 2020.
5
Level-Set Method for Image Analysis of Schlemm's Canal and Trabecular Meshwork.
Transl Vis Sci Technol. 2020 Sep 4;9(10):7. doi: 10.1167/tvst.9.10.7. eCollection 2020 Sep.
6
Is Intensity Inhomogeneity Correction Useful for Classification of Breast Cancer in Sonograms Using Deep Neural Network?
J Healthc Eng. 2018 Dec 4;2018:8413403. doi: 10.1155/2018/8413403. eCollection 2018.
7
Confirmation of a gyral bias in diffusion MRI fiber tractography.
Hum Brain Mapp. 2018 Mar;39(3):1449-1466. doi: 10.1002/hbm.23936. Epub 2017 Dec 19.
8
Active contours driven by difference of Gaussians.
Sci Rep. 2017 Nov 3;7(1):14984. doi: 10.1038/s41598-017-14502-w.
9
Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity.
PLoS One. 2017 Apr 4;12(4):e0174813. doi: 10.1371/journal.pone.0174813. eCollection 2017.
10
Tests of cortical parcellation based on white matter connectivity using diffusion tensor imaging.
Neuroimage. 2018 Apr 15;170:321-331. doi: 10.1016/j.neuroimage.2017.02.048. Epub 2017 Feb 22.

本文引用的文献

1
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
2
Correction of intensity variations in MR images for computer-aided tissue classification.
IEEE Trans Med Imaging. 1993;12(4):770-81. doi: 10.1109/42.251128.
3
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
4
Retrospective correction of intensity inhomogeneities in MRI.
IEEE Trans Med Imaging. 1995;14(1):36-41. doi: 10.1109/42.370400.
5
A review of methods for correction of intensity inhomogeneity in MRI.
IEEE Trans Med Imaging. 2007 Mar;26(3):405-21. doi: 10.1109/TMI.2006.891486.
6
Correction of differential intensity inhomogeneity in longitudinal MR images.
Neuroimage. 2004 Sep;23(1):75-83. doi: 10.1016/j.neuroimage.2004.04.030.
7
Parametric estimate of intensity inhomogeneities applied to MRI.
IEEE Trans Med Imaging. 2000 Mar;19(3):153-65. doi: 10.1109/42.845174.
8
Automated model-based bias field correction of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):885-96. doi: 10.1109/42.811268.
9
Adaptive fuzzy segmentation of magnetic resonance images.
IEEE Trans Med Imaging. 1999 Sep;18(9):737-52. doi: 10.1109/42.802752.
10
A nonparametric method for automatic correction of intensity nonuniformity in MRI data.
IEEE Trans Med Imaging. 1998 Feb;17(1):87-97. doi: 10.1109/42.668698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验