Jakobsen B K, Pelham H R
MRC Laboratory of Molecular Biology, Cambridge, UK.
EMBO J. 1991 Feb;10(2):369-75. doi: 10.1002/j.1460-2075.1991.tb07958.x.
In yeast, expression of heat shock genes is regulated by a factor (HSF) which binds constitutively to DNA, but activates transcription efficiently only after heat shock. We have compared the HSFs from Saccharomyces cerevisiae and Kluyveromyces lactis. Both factors contain an activation domain whose activity is masked at low temperature, but the amino acid sequences of these activators are unrelated. Masking requires the evolutionarily conserved DNA binding and oligomerization domains, as well as a short conserved element close to the activator. Although this element contains potential phosphorylation sites, they are not required for induction. We suggest that the conserved element binds either to the structural core of the protein or to another polypeptide, holding the activator in an inactive configuration, and that high temperatures disrupt this interaction. Our results emphasize the importance of global protein structure in the regulation of transcription factor activity.
在酵母中,热休克基因的表达受一种因子(热休克因子,HSF)调控,该因子能持续结合DNA,但只有在热休克后才会高效激活转录。我们比较了酿酒酵母和乳酸克鲁维酵母的热休克因子。这两种因子都含有一个激活结构域,其活性在低温下被掩盖,但这些激活剂的氨基酸序列并无关联。掩盖作用需要进化上保守的DNA结合和寡聚化结构域,以及靠近激活剂的一个短保守元件。尽管该元件含有潜在的磷酸化位点,但诱导过程并不需要它们。我们认为,保守元件要么与蛋白质的结构核心结合,要么与另一种多肽结合,使激活剂处于无活性构象,而高温会破坏这种相互作用。我们的结果强调了整体蛋白质结构在转录因子活性调控中的重要性。