Ratcliff Roger
Ohio State University, Columbus, OH, USA.
Psychon Bull Rev. 2008 Dec;15(6):1218-28. doi: 10.3758/PBR.15.6.1218.
The diffusion model (Ratcliff, 1978) for fast two-choice decisions has been successful in a number of domains. Wagenmakers, van der Maas, and Grasman (2007) proposed a new method for fitting the model to data ("EZ") that is simpler than the standard chisquare method (Ratcliff & Tuerlinckx, 2002). For an experimental condition, EZ can estimate parameter values for the main components of processing using only correct response times (RTs), their variance, and accuracy, not error RTs or the shapes of RT distributions. Wagenmakers et al. suggested that EZ produces accurate parameter estimates in cases in which the chi-square method would fail-specifically, experimental conditions with small numbers of observations or with accuracy near ceiling. In this article, I counter these claims and discuss EZ's limitations. Unlike the chi-square method, EZ is extremely sensitive to outlier RTs and is usually less efficient in recovering parameter values, and it can lead to errors in interpretation when the data do not meet its assumptions, when the number of observations in an experimental condition is small, or when accuracy in an experimental condition is high. The conclusion is that EZ can be useful in the exploration of parameter spaces, but it should not be used for meaningful estimates of parameter values or for assessing whether or not a model fits data.
用于快速二选一决策的扩散模型(拉特克利夫,1978年)在许多领域都取得了成功。瓦根梅克斯、范德马斯和格拉斯曼(2007年)提出了一种将该模型与数据拟合的新方法(“EZ”),该方法比标准的卡方方法(拉特克利夫和图尔林克斯,2002年)更简单。对于一个实验条件,EZ仅使用正确反应时(RTs)、它们的方差和准确率,而不是错误反应时或反应时分布的形状,就可以估计加工主要成分的参数值。瓦根梅克斯等人认为,在卡方方法会失败的情况下——具体来说,是在观察次数较少或准确率接近上限的实验条件下,EZ能产生准确的参数估计。在本文中,我反驳了这些说法,并讨论了EZ的局限性。与卡方方法不同,EZ对异常值反应时极其敏感,在恢复参数值方面通常效率较低,并且当数据不符合其假设、实验条件下的观察次数较少或实验条件下的准确率较高时,它可能会导致解释错误。结论是,EZ在参数空间探索中可能有用,但它不应用于有意义的参数值估计或评估模型是否拟合数据。