Suppr超能文献

EZ扩散法:太简单了?

The EZ diffusion method: too EZ?

作者信息

Ratcliff Roger

机构信息

Ohio State University, Columbus, OH, USA.

出版信息

Psychon Bull Rev. 2008 Dec;15(6):1218-28. doi: 10.3758/PBR.15.6.1218.

Abstract

The diffusion model (Ratcliff, 1978) for fast two-choice decisions has been successful in a number of domains. Wagenmakers, van der Maas, and Grasman (2007) proposed a new method for fitting the model to data ("EZ") that is simpler than the standard chisquare method (Ratcliff & Tuerlinckx, 2002). For an experimental condition, EZ can estimate parameter values for the main components of processing using only correct response times (RTs), their variance, and accuracy, not error RTs or the shapes of RT distributions. Wagenmakers et al. suggested that EZ produces accurate parameter estimates in cases in which the chi-square method would fail-specifically, experimental conditions with small numbers of observations or with accuracy near ceiling. In this article, I counter these claims and discuss EZ's limitations. Unlike the chi-square method, EZ is extremely sensitive to outlier RTs and is usually less efficient in recovering parameter values, and it can lead to errors in interpretation when the data do not meet its assumptions, when the number of observations in an experimental condition is small, or when accuracy in an experimental condition is high. The conclusion is that EZ can be useful in the exploration of parameter spaces, but it should not be used for meaningful estimates of parameter values or for assessing whether or not a model fits data.

摘要

用于快速二选一决策的扩散模型(拉特克利夫,1978年)在许多领域都取得了成功。瓦根梅克斯、范德马斯和格拉斯曼(2007年)提出了一种将该模型与数据拟合的新方法(“EZ”),该方法比标准的卡方方法(拉特克利夫和图尔林克斯,2002年)更简单。对于一个实验条件,EZ仅使用正确反应时(RTs)、它们的方差和准确率,而不是错误反应时或反应时分布的形状,就可以估计加工主要成分的参数值。瓦根梅克斯等人认为,在卡方方法会失败的情况下——具体来说,是在观察次数较少或准确率接近上限的实验条件下,EZ能产生准确的参数估计。在本文中,我反驳了这些说法,并讨论了EZ的局限性。与卡方方法不同,EZ对异常值反应时极其敏感,在恢复参数值方面通常效率较低,并且当数据不符合其假设、实验条件下的观察次数较少或实验条件下的准确率较高时,它可能会导致解释错误。结论是,EZ在参数空间探索中可能有用,但它不应用于有意义的参数值估计或评估模型是否拟合数据。

相似文献

1
The EZ diffusion method: too EZ?
Psychon Bull Rev. 2008 Dec;15(6):1218-28. doi: 10.3758/PBR.15.6.1218.
2
EZ does it! Extensions of the EZ-diffusion model.
Psychon Bull Rev. 2008 Dec;15(6):1229-35. doi: 10.3758/PBR.15.6.1229.
4
An EZ-diffusion model for response time and accuracy.
Psychon Bull Rev. 2007 Feb;14(1):3-22. doi: 10.3758/bf03194023.
6
The EZ diffusion model provides a powerful test of simple empirical effects.
Psychon Bull Rev. 2017 Apr;24(2):547-556. doi: 10.3758/s13423-016-1081-y.
7
Retest reliability of the parameters of the Ratcliff diffusion model.
Psychol Res. 2017 May;81(3):629-652. doi: 10.1007/s00426-016-0770-5. Epub 2016 Apr 23.
8
Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time.
Psychometrika. 2019 Sep;84(3):870-891. doi: 10.1007/s11336-019-09668-3. Epub 2019 Mar 27.
9
Investigating the impact of mindfulness meditation training on working memory: a mathematical modeling approach.
Cogn Affect Behav Neurosci. 2011 Sep;11(3):344-53. doi: 10.3758/s13415-011-0048-8.
10
Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model.
Psychometrika. 2022 Jun;87(2):725-748. doi: 10.1007/s11336-021-09819-5. Epub 2022 Jan 6.

引用本文的文献

1
A Diffusion Model Account of Cognitive Variability in Healthy Aging and Mild Cognitive Impairment.
Exp Aging Res. 2025 May-Jun;51(3):285-302. doi: 10.1080/0361073X.2024.2409588. Epub 2024 Sep 29.
2
Sequential Effects on Reaction Time Distributions: Commonalities and Differences Across Paradigms.
J Cogn. 2024 Sep 3;7(1):68. doi: 10.5334/joc.395. eCollection 2024.
3
4
Problems when fixing the response bias parameter z in drift diffusion analysis : A Commentary on Stafford et al. (2020).
Behav Res Methods. 2023 Jan;55(1):168-175. doi: 10.3758/s13428-021-01786-0. Epub 2022 Mar 22.
5
Discriminating memory disordered patients from controls using diffusion model parameters from recognition memory.
J Exp Psychol Gen. 2022 Jun;151(6):1377-1393. doi: 10.1037/xge0001133. Epub 2021 Nov 4.
6
An Attention-Based Diffusion Model for Psychometric Analyses.
Psychometrika. 2021 Dec;86(4):938-972. doi: 10.1007/s11336-021-09783-0. Epub 2021 Jul 13.
7
An Overcomplete Approach to Fitting Drift-Diffusion Decision Models to Trial-By-Trial Data.
Front Artif Intell. 2021 Apr 9;4:531316. doi: 10.3389/frai.2021.531316. eCollection 2021.
9
Comparing Eight Parameter Estimation Methods for the Ratcliff Diffusion Model Using Free Software.
Front Psychol. 2020 Sep 29;11:484737. doi: 10.3389/fpsyg.2020.484737. eCollection 2020.

本文引用的文献

1
Dysphoria and memory for emotional material: A diffusion-model analysis.
Cogn Emot. 2009 Jan 1;23(1):181-205. doi: 10.1080/02699930801976770.
2
Fitting the Ratcliff diffusion model to experimental data.
Psychon Bull Rev. 2007 Dec;14(6):1011-26. doi: 10.3758/bf03193087.
3
The diffusion decision model: theory and data for two-choice decision tasks.
Neural Comput. 2008 Apr;20(4):873-922. doi: 10.1162/neco.2008.12-06-420.
4
A model of the go/no-go task.
J Exp Psychol Gen. 2007 Aug;136(3):389-413. doi: 10.1037/0096-3445.136.3.389.
5
An EZ-diffusion model for response time and accuracy.
Psychon Bull Rev. 2007 Feb;14(1):3-22. doi: 10.3758/bf03194023.
6
Application of the diffusion model to two-choice tasks for adults 75-90 years old.
Psychol Aging. 2007 Mar;22(1):56-66. doi: 10.1037/0882-7974.22.1.56.
7
Aging and individual differences in rapid two-choice decisions.
Psychon Bull Rev. 2006 Aug;13(4):626-35. doi: 10.3758/bf03193973.
8
A diffusion model analysis of the effects of aging in the lexical-decision task.
Psychol Aging. 2004 Jun;19(2):278-89. doi: 10.1037/0882-7974.19.2.278.
10
A comparison of sequential sampling models for two-choice reaction time.
Psychol Rev. 2004 Apr;111(2):333-67. doi: 10.1037/0033-295X.111.2.333.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验