Suppr超能文献

使用识别记忆的扩散模型参数区分记忆障碍患者和对照组。

Discriminating memory disordered patients from controls using diffusion model parameters from recognition memory.

机构信息

Department of Psychology, Ohio State University.

Center for Cognitive and Memory Disorders, Ohio State University.

出版信息

J Exp Psychol Gen. 2022 Jun;151(6):1377-1393. doi: 10.1037/xge0001133. Epub 2021 Nov 4.

Abstract

One hundred and five memory disordered (MD) patients and 57 controls were tested on item recognition memory and lexical decision tasks, and diffusion model analyses were conducted on accuracy and response time distributions for correct and error responses. The diffusion model fit the data well for the MD patients and control subjects, the results replicated earlier studies with young and older adults, and individual differences were consistent between the item recognition and lexical decision tasks. In the diffusion model analysis, MD patients had lower drift rates (with mild Alzheimer's [AD] patients lower than mild cognitive impairment [MCI] patients) as well as wider boundaries and longer nondecision times. These data and results were used in a series of studies to examine how well MD patients could be discriminated from controls using machine-learning techniques, linear discriminant analysis, logistic regression, and support vector machines (all of which produced similar results). There was about 83% accuracy in separating MD from controls, and within the MD group, AD patients had about 90% accuracy and MCI patients had about 68% accuracy (controls had about 90% accuracy). These methods might offer an adjunct to traditional clinical diagnosis. Limitations are noted including difficulties in obtaining a matched group of control subjects as well as the possibility of misdiagnosis of MD patients. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

105 名记忆障碍(MD)患者和 57 名对照者接受了项目识别记忆和词汇判断任务的测试,并对正确和错误反应的准确性和反应时间分布进行了扩散模型分析。扩散模型很好地适用于 MD 患者和对照组的数据,结果与年轻和老年成年人的早期研究相吻合,并且项目识别和词汇判断任务之间的个体差异是一致的。在扩散模型分析中,MD 患者的漂移率较低(轻度阿尔茨海默病 [AD] 患者的漂移率低于轻度认知障碍 [MCI] 患者),边界较宽,非决策时间较长。这些数据和结果被用于一系列研究中,以检查使用机器学习技术、线性判别分析、逻辑回归和支持向量机(所有这些技术都产生了相似的结果)从对照者中区分 MD 患者的效果。MD 患者与对照者的分离准确率约为 83%,在 MD 患者组中,AD 患者的准确率约为 90%,MCI 患者的准确率约为 68%(对照者的准确率约为 90%)。这些方法可能为传统的临床诊断提供补充。需要注意的是,包括难以获得匹配的对照组以及 MD 患者误诊的可能性在内的局限性。

相似文献

1
Discriminating memory disordered patients from controls using diffusion model parameters from recognition memory.
J Exp Psychol Gen. 2022 Jun;151(6):1377-1393. doi: 10.1037/xge0001133. Epub 2021 Nov 4.
4
Use of Speech Analyses within a Mobile Application for the Assessment of Cognitive Impairment in Elderly People.
Curr Alzheimer Res. 2018;15(2):120-129. doi: 10.2174/1567205014666170829111942.
8
Associative learning and regional white matter deficits in mild cognitive impairment.
J Alzheimers Dis. 2014;41(2):421-30. doi: 10.3233/JAD-131682.

引用本文的文献

1
Partially Observable Predictor Models for Identifying Cognitive Markers.
Comput Brain Behav. 2025;8(3):410-420. doi: 10.1007/s42113-025-00238-8. Epub 2025 Mar 24.
2
A Diffusion Model Account of Cognitive Variability in Healthy Aging and Mild Cognitive Impairment.
Exp Aging Res. 2025 May-Jun;51(3):285-302. doi: 10.1080/0361073X.2024.2409588. Epub 2024 Sep 29.
3
Episodic memory assessment: effects of sex and age on performance and response time during a continuous recognition task.
Front Hum Neurosci. 2024 Apr 4;18:1304221. doi: 10.3389/fnhum.2024.1304221. eCollection 2024.
5
Cognitive Signatures of Depressive and Anhedonic Symptoms and Affective States Using Computational Modeling and Neurocognitive Testing.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Jul;9(7):726-736. doi: 10.1016/j.bpsc.2024.02.005. Epub 2024 Feb 23.
7
8
Can neuropsychological testing be improved with model-based approaches?
Trends Cogn Sci. 2022 Nov;26(11):899-901. doi: 10.1016/j.tics.2022.08.015. Epub 2022 Sep 21.
9
Integrated diffusion models for distance effects in number memory.
Cogn Psychol. 2022 Nov;138:101516. doi: 10.1016/j.cogpsych.2022.101516. Epub 2022 Sep 14.

本文引用的文献

2
Diagnosis of Alzheimer's disease with Electroencephalography in a differential framework.
PLoS One. 2018 Mar 20;13(3):e0193607. doi: 10.1371/journal.pone.0193607. eCollection 2018.
3
A systematic review of the diagnostic accuracy of automated tests for cognitive impairment.
Int J Geriatr Psychiatry. 2018 Apr;33(4):561-575. doi: 10.1002/gps.4852. Epub 2018 Jan 22.
4
A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength.
Neuropsychologia. 2016 Dec;93(Pt A):128-141. doi: 10.1016/j.neuropsychologia.2016.09.026. Epub 2016 Sep 29.
5
Diffusion Decision Model: Current Issues and History.
Trends Cogn Sci. 2016 Apr;20(4):260-281. doi: 10.1016/j.tics.2016.01.007. Epub 2016 Mar 5.
6
Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions.
Annu Rev Psychol. 2016;67:641-66. doi: 10.1146/annurev-psych-122414-033645. Epub 2015 Sep 17.
8
Modeling individual differences in response time and accuracy in numeracy.
Cognition. 2015 Apr;137:115-136. doi: 10.1016/j.cognition.2014.12.004. Epub 2015 Jan 29.
9
Sensitivity and specificity of diagnostic accuracy in Alzheimer's disease: a synthesis of existing evidence.
Am J Alzheimers Dis Other Demen. 2013 Jun;28(4):337-47. doi: 10.1177/1533317513488910. Epub 2013 May 17.
10
Parameter variability and distributional assumptions in the diffusion model.
Psychol Rev. 2013 Jan;120(1):281-92. doi: 10.1037/a0030775. Epub 2012 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验