Suppr超能文献

戊二醛增强的介电泳酵母细胞分离。

Glutaraldehyde enhanced dielectrophoretic yeast cell separation.

机构信息

Department of Chemical and Biomolecular Engineering, Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, Indiana 46556, USA.

出版信息

Biomicrofluidics. 2009 Nov 23;3(4):44108. doi: 10.1063/1.3257857.

Abstract

We introduce a method for improved dielectrophoretic (DEP) discrimination and separation of viable and nonviable yeast cells. Due to the higher cell wall permeability of nonviable yeast cells compared with their viable counterpart, the cross-linking agent glutaraldehyde (GLT) is shown to selectively cross-link nonviable cells to a much greater extent than viable yeast. The DEP crossover frequency (cof) of both viable and nonviable yeast cells was measured over a large range of buffer conductivities (22 muScm-400 muScm) in order to study this effect. The results indicate that due to selective nonviable cell cross-linking, GLT modifies the DEP cof of nonviable cells, while viable cell cof remains relatively unaffected. To investigate this in more detail, a dual-shelled oblate spheroid model was evoked and fitted to the cof data to study cell electrical properties. GLT treatment is shown to minimize ion leakage out of the nonviable yeast cells by minimizing changes in cytoplasm conductivity over a large range of ionic concentrations. This effect is only observable in nonviable cells where GLT treatment serves to stabilize the cell cytoplasm conductivity over a large range of buffer conductivity and allow for much greater differences between viable and nonviable cell cofs. As such, by taking advantage of differences in cell wall permeability GLT magnifies the effect DEP has on the field induced separation of viable and nonviable yeasts.

摘要

我们介绍了一种改进的介电泳(DEP)区分和分离活细胞和死细胞的方法。由于死细胞的细胞壁通透性比活细胞更高,因此交联剂戊二醛(GLT)被证明可以选择性地交联死细胞,交联程度远高于活酵母。为了研究这种效应,我们在较大的缓冲电导率范围内(22 μScm-400 μScm)测量了活细胞和死细胞的 DEP 交叉频率(cof)。结果表明,由于选择性的死细胞交联,GLT 改变了死细胞的 DEP cof,而活细胞的 cof 相对不受影响。为了更详细地研究这一点,我们提出了一个双壳扁球模型,并将其拟合到 cof 数据上,以研究细胞的电学性质。GLT 处理通过最小化细胞质电导率在较大的离子浓度范围内的变化,最大限度地减少了死细胞中离子的漏出。这种效应仅在 GLT 处理可稳定细胞质电导率的死细胞中观察到,因为这种处理可以在较大的缓冲电导率范围内产生活细胞和死细胞 cof 之间的差异。因此,通过利用细胞壁通透性的差异,GLT 放大了 DEP 对活细胞和死细胞场诱导分离的影响。

相似文献

1
Glutaraldehyde enhanced dielectrophoretic yeast cell separation.
Biomicrofluidics. 2009 Nov 23;3(4):44108. doi: 10.1063/1.3257857.
3
Modifying dielectrophoretic response of nonviable yeast cells by ionic surfactant treatment.
Anal Chem. 2013 Jul 2;85(13):6364-71. doi: 10.1021/ac400741v. Epub 2013 Jun 14.
4
Separation of viable and nonviable animal cell using dielectrophoretic filter.
Biotechnol Prog. 2010 Jul-Aug;26(4):1061-7. doi: 10.1002/btpr.394.
5
Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
Adv Anat Embryol Cell Biol. 2003;173:III-IX, 1-77. doi: 10.1007/978-3-642-55469-8.
7
Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis.
Anal Chem. 2019 May 7;91(9):6304-6314. doi: 10.1021/acs.analchem.9b01104. Epub 2019 Apr 22.
9
Dielectrophoretic detection of electrical property changes of stored human red blood cells.
Electrophoresis. 2022 Jun;43(12):1297-1308. doi: 10.1002/elps.202100241. Epub 2022 May 1.

引用本文的文献

2
Dielectrophoretic force measurement of red blood cells exposed to oxidative stress using optical tweezers and a microfluidic chip.
Biomed Eng Lett. 2017 Jul 10;7(4):317-323. doi: 10.1007/s13534-017-0041-4. eCollection 2017 Nov.
3
Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers.
Electrophoresis. 2015 Jul;36(13):1499-506. doi: 10.1002/elps.201500119. Epub 2015 Jun 12.
4
High frequency dielectrophoretic response of microalgae over time.
Electrophoresis. 2014 Dec;35(24):3533-40. doi: 10.1002/elps.201400306. Epub 2014 Nov 2.
5
Microfluidic electrical sorting of particles based on shape in a spiral microchannel.
Biomicrofluidics. 2014 Jan 14;8(1):014101. doi: 10.1063/1.4862355. eCollection 2014 Jan.
6
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
7
Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.
Biomicrofluidics. 2013 Jan 24;7(1):11810. doi: 10.1063/1.4780062. eCollection 2013.
8
Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments.
Biomicrofluidics. 2011 Dec;5(4):44109-4410916. doi: 10.1063/1.3659282. Epub 2011 Nov 17.
9
Three-dimensional cellular focusing utilizing a combination of insulator-based and metallic dielectrophoresis.
Biomicrofluidics. 2011 Dec;5(4):44101-4410111. doi: 10.1063/1.3646757. Epub 2011 Oct 3.

本文引用的文献

2
Dielectrophoretic separation of cells: Continuous separation.
Biotechnol Bioeng. 1995 Feb 20;45(4):337-43. doi: 10.1002/bit.260450408.
3
Microsample preparation by dielectrophoresis: isolation of malaria.
Lab Chip. 2002 May;2(2):70-5. doi: 10.1039/b110990c. Epub 2002 Jan 30.
4
Microfluidic approaches to malaria detection.
Acta Trop. 2004 Feb;89(3):357-69. doi: 10.1016/j.actatropica.2003.11.009.
6
Dielectric properties of zwitterion solutions.
Biochem Soc Trans. 1993 Nov;21(4):475S. doi: 10.1042/bst021475s.
7
Separation of viable and non-viable yeast using dielectrophoresis.
J Biotechnol. 1994 Jan 15;32(1):29-37. doi: 10.1016/0168-1656(94)90117-1.
8
The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model.
Biochim Biophys Acta. 1987 Jun 12;900(1):45-55. doi: 10.1016/0005-2736(87)90276-8.
9
Dielectric properties of yeast cells as determined by electrorotation.
Biochim Biophys Acta. 1992 Feb 17;1104(1):195-200. doi: 10.1016/0005-2736(92)90150-k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验