Suppr超能文献

使用具有中度强抑制作用的动态神经场来跟踪种群密度。

Tracking population densities using dynamic neural fields with moderately strong inhibition.

机构信息

Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, Canada, B3H 1W5,

出版信息

Cogn Neurodyn. 2008 Sep;2(3):171-7. doi: 10.1007/s11571-008-9046-0. Epub 2008 Apr 17.

Abstract

We discuss the ability of dynamic neural fields to track noisy population codes in an online fashion when signals are constantly applied to the recurrent network. To report on the quantitative performance of such networks we perform population decoding of the 'orientation' embedded in the noisy signal and determine which inhibition strength in the network provides the best decoding performance. We also study the performance of decoding on time-varying signals. Simulations of the system show good performance even in the very noisy case and also show that noise is beneficial to decoding time-varying signals.

摘要

我们讨论了动态神经场在信号不断施加于递归网络时以在线方式跟踪噪声群体代码的能力。为了报告此类网络的定量性能,我们对噪声信号中嵌入的“方向”进行了群体解码,并确定了网络中哪种抑制强度提供了最佳解码性能。我们还研究了对时变信号的解码性能。即使在非常嘈杂的情况下,系统的模拟也表现出良好的性能,并且还表明噪声有利于解码时变信号。

相似文献

本文引用的文献

2
Learning multiple layers of representation.学习多层表示。
Trends Cogn Sci. 2007 Oct;11(10):428-34. doi: 10.1016/j.tics.2007.09.004.
3
A theory of cortical responses.一种皮层反应理论。
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36. doi: 10.1098/rstb.2005.1622.
9
Information processing with population codes.基于群体编码的信息处理。
Nat Rev Neurosci. 2000 Nov;1(2):125-32. doi: 10.1038/35039062.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验