Bayoumi Soad A L, Rowan Michael G, Blagbrough Ian S, Beeching John R
Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
Phytochemistry. 2008 Dec;69(17):2928-36. doi: 10.1016/j.phytochem.2008.09.023. Epub 2008 Nov 10.
Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and have pharmacological activities. Some steps in the biosynthesis of these molecules are still unknown in cassava and in other plants. We exploit the accumulation of these coumarins during PPD to investigate the E-Z-isomerisation step in their biosynthesis. Feeding cubed cassava roots with E-cinnamic-3,2',3',4',5',6'-d(5) acid gave scopoletin-d(2). However, feeding with E-cinnamic-3,2',3',4',5',6'-d(6) and E-cinnamic-2,3,2',3',4',5',6'-d(7) acids, both gave scopoletin-d(3), the latter not affording the expected scopoletin-d(4). We therefore synthesised and fed with E-cinnamic-2-d(1) when unlabelled scopoletin was biosynthesised. Solely the hydrogen (or deuterium) at C2 of cinnamic acid is exchanged in the biosynthesis of hydroxycoumarins. If the mechanism of E-Z-cinnamic acid isomerisation were photochemical, we would not expect to see the loss of deuterium which we observed. Therefore, a possible mechanism is an enzyme catalysed 1,4-Michael addition, followed by sigma-bond rotation and hydrogen (or deuterium) elimination to yield the Z-isomer. Feeding the roots under light and dark conditions with E-cinnamic-2,3,2',3',4',5',6'-d(7) acid gave scopoletin-d(3) with no significant difference in the yields. We conclude that the E-Z-isomerisation stage in the biosynthesis of scopoletin and scopolin, in cassava roots during PPD, is not photochemical, but could be catalysed by an isomerase which is independent of light.
收获后两到三天,木薯(Manihot esculenta Crantz)根在次生代谢产物积累时会遭受采后生理劣变(PPD)。其中包括羟基香豆素(如东莨菪素及其糖苷东莨菪苷),它们在植物防御中发挥作用并具有药理活性。这些分子生物合成中的一些步骤在木薯和其他植物中仍然未知。我们利用PPD期间这些香豆素的积累来研究其生物合成中的E-Z异构化步骤。用E-肉桂酸-3,2',3',4',5',6'-d(5)酸饲喂木薯块根可得到东莨菪素-d(2)。然而,用E-肉桂酸-3,2',3',4',5',6'-d(6)酸和E-肉桂酸-2,3,2',3',4',5',6'-d(7)酸饲喂,都得到了东莨菪素-d(3),后者未得到预期的东莨菪素-d(4)。因此,我们合成并饲喂了E-肉桂酸-2-d(1),此时生物合成出了未标记的东莨菪素。在羟基香豆素的生物合成中,仅肉桂酸C2位的氢(或氘)发生了交换。如果E-Z肉桂酸异构化的机制是光化学的,我们就不会看到我们所观察到的氘的损失。因此,一种可能的机制是酶催化的1,4-迈克尔加成,随后是σ键旋转和氢(或氘)消除以产生Z异构体。在光照和黑暗条件下用E-肉桂酸-2,3,2',3',4',5',6'-d(7)酸饲喂根,得到的东莨菪素-d(3)产率没有显著差异。我们得出结论,在PPD期间木薯根中东莨菪素和东莨菪苷生物合成中的E-Z异构化阶段不是光化学的,而是可能由一种与光无关的异构酶催化。