Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2023 Feb 3;14(1):597. doi: 10.1038/s41467-023-36299-1.
Plants contain rapidly evolving specialized enzymes that support the biosynthesis of functionally diverse natural products. In coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered to accelerate coumarin formation as the only known BAHD enzyme to catalyze an intramolecular acyl transfer reaction. Here we investigate the structural and mechanistic basis for COSY's coumarin synthase activity. Our structural analyses reveal an unconventional active-site configuration adapted to COSY's specialized activity. Through mutagenesis studies and deuterium exchange experiments, we identify a unique proton exchange mechanism at the α-carbon of the o-hydroxylated trans-hydroxycinnamoyl-CoA substrates during the catalytic cycle of COSY. Quantum mechanical cluster modeling and molecular dynamics further support this key mechanism for lowering the activation energy of the rate-limiting trans-to-cis isomerization step in coumarin production. This study unveils an unconventional catalytic mechanism mediated by a BAHD-family enzyme, and sheds light on COSY's evolutionary origin and its recruitment to coumarin biosynthesis in eudicots.
植物中含有快速进化的特殊酶,这些酶能够支持功能多样的天然产物的生物合成。在香豆素生物合成中,最近发现一种 BAHD 酰基转移酶家族酶 COSY 作为唯一已知的能够催化分子内酰基转移反应的 BAHD 酶,可加速香豆素的形成。在这里,我们研究了 COSY 香豆素合酶活性的结构和机制基础。我们的结构分析揭示了一种适应 COSY 特殊活性的非常规活性位点构象。通过突变研究和氘交换实验,我们在 COSY 的催化循环中鉴定出了在 α-碳原子上的独特质子交换机制,涉及到被羟基化的反式羟基肉桂酰辅酶 A 底物。量子力学簇模型和分子动力学进一步支持了这种关键机制,该机制降低了香豆素生成过程中限速的反式到顺式异构化步骤的活化能。这项研究揭示了一种由 BAHD 家族酶介导的非常规催化机制,并阐明了 COSY 的进化起源及其在真双子叶植物中香豆素生物合成中的招募。