Chen Rongmin, Seo Dong-Oh, Bell Elijah, von Gall Charlotte, Lee Choogon
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA.
J Neurosci. 2008 Nov 12;28(46):11839-47. doi: 10.1523/JNEUROSCI.2191-08.2008.
The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L/D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 h using a 15 h LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility.
视交叉上核(SCN)中的哺乳动物分子昼夜节律时钟调节运动活动节律以及外周组织中的时钟(Reppert和Weaver,2002年;Ko和Takahashi,2006年)。持续光照(LL)可通过使SCN中的时钟细胞失同步来诱导行为和生理节律紊乱(Ohta等人,2005年)。我们通过探究分子时钟并测量从LL转移到持续黑暗(DD)的小鼠的行为,研究了紊乱的时钟细胞如何重新同步。在LL中被破坏的昼夜运动活动节律从DD开始时再次变得强烈有节律,并且DD中节律的起始阶段是特定的,而非随机的,这表明失同步的时钟细胞通过L/D转换以非常规方式迅速重置。通过测量mPERIOD蛋白节律,我们表明SCN和外周组织时钟迅速再次与行为节律同步变得有节律。我们提出这种重置机制可能不同于传统的相移,传统相移涉及Period基因的光诱导(Albrecht等人,1997年;Shearman等人,1997年;Shigeyoshi等人,1997年)。利用我们的功能见解,我们可以通过15小时的LL处理将运动活动节律的昼夜相位改变12小时:基本上通过单个光脉冲产生相位反转,这一壮举此前在野生型小鼠中尚未有报道,并且具有潜在的临床应用价值。