Hannula Manne, Huttunen Kerttu, Koskelo Jukka, Laitinen Tomi, Leino Tuomo
Medical Engineering R & D Center, Oulu University of Applied Sciences, Finland.
Comput Biol Med. 2008 Nov-Dec;38(11-12):1163-70. doi: 10.1016/j.compbiomed.2008.09.007.
In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography (ECG) measurements and an evaluation of cognitive load that induces psychophysiological stress (PPS), collected from 14 interceptor fighter pilots during complex simulated F/A-18 Hornet air battles. In our data, the mean absolute error of the ANN estimate was 11.4 as a visual analog scale score, being 13-23% better than the mean absolute error of the MLR model in the estimation of cognitive workload.
在本研究中,在个体认知工作量评估中比较了基于人工神经网络(ANN)分析和多线性回归(MLR)模型的心率估计性能。数据包括心电图(ECG)测量以及对引起心理生理应激(PPS)的认知负荷的评估,这些数据是在复杂的模拟F/A-18大黄蜂空战期间从14名拦截战斗机飞行员收集的。在我们的数据中,ANN估计的平均绝对误差为11.4(视觉模拟量表评分),在认知工作量估计方面比MLR模型的平均绝对误差好13%-23%。