Suppr超能文献

网格细胞:位置编码、活动的神经网络模型以及学习问题。

Grid cells: the position code, neural network models of activity, and the problem of learning.

作者信息

Welinder Peter E, Burak Yoram, Fiete Ila R

机构信息

Computation and Neural Systems, California Institute of Technology, Pasadena, California, USA.

出版信息

Hippocampus. 2008;18(12):1283-300. doi: 10.1002/hipo.20519.

Abstract

We review progress on the modeling and theoretical fronts in the quest to unravel the computational properties of the grid cell code and to explain the mechanisms underlying grid cell dynamics. The goals of the review are to outline a coherent framework for understanding the dynamics of grid cells and their representation of space; to critically present and draw contrasts between recurrent network models of grid cells based on continuous attractor dynamics and independent-neuron models based on temporal interference; and to suggest open questions for experiment and theory.

摘要

我们回顾了在揭示网格细胞编码的计算特性以及解释网格细胞动力学潜在机制的研究中,建模和理论方面所取得的进展。本次综述的目的是勾勒出一个连贯的框架,以理解网格细胞的动力学及其对空间的表征;批判性地呈现基于连续吸引子动力学的网格细胞循环网络模型与基于时间干扰的独立神经元模型之间的差异并进行对比;并提出实验和理论方面的开放性问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验